Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 27, Problem 54P
(a)
To determine
The magnetic field inside the solenoid increases or decreases.
(b)
To determine
The percentage of magnetic field with which it increases or decreases inside the solenoid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose you run 3 A through a 20 cm solenoid which has 20 turns. The interior of thesolenoid contains air, which has a magnetic permeability of 4πX10^( –7) Tm/A. Calculatethe magnetic field you would expect to measure inside the solenoid, and What would happen to the magnetic field of the solenoid if we introduce an iron core into the solenoid with a permeability μ= 5 X10^(–5) Tm/A?
You would like to store 9.9 J of energy in the magnetic fieldof a solenoid. The solenoid has 580 circular turns of diameter7.2 cm distributed uniformly along its 28-cm length. (a) How muchcurrent is needed? (b) What is the magnitude of the magneticfield inside the solenoid? (c) What is the energy density (energy/volume) inside the solenoid?
For a solenoid in vacuum of length /
10 cm with 10* turns per meter calculate the value of the current if the solenoid is placed in an
external uniform magnetic field Bext = 35 µT with field lines exactly opposite to the field produced by the solenoid. Take vacuum
permeability µo
4r × 10-' H/m. Provide your answer in Sl units.
Chapter 27 Solutions
Physics for Scientists and Engineers
Ch. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10P
Ch. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - Prob. 61PCh. 27 - Prob. 62PCh. 27 - Prob. 63PCh. 27 - Prob. 64PCh. 27 - Prob. 65PCh. 27 - Prob. 66PCh. 27 - Prob. 67PCh. 27 - Prob. 68PCh. 27 - Prob. 69PCh. 27 - Prob. 70PCh. 27 - Prob. 71PCh. 27 - Prob. 72PCh. 27 - Prob. 73PCh. 27 - Prob. 74PCh. 27 - Prob. 75PCh. 27 - Prob. 76PCh. 27 - Prob. 77PCh. 27 - Prob. 78PCh. 27 - Prob. 79PCh. 27 - Prob. 80PCh. 27 - Prob. 81PCh. 27 - Prob. 82PCh. 27 - Prob. 83PCh. 27 - Prob. 84PCh. 27 - Prob. 85PCh. 27 - Prob. 86PCh. 27 - Prob. 87PCh. 27 - Prob. 88PCh. 27 - Prob. 89PCh. 27 - Prob. 90PCh. 27 - Prob. 91PCh. 27 - Prob. 92PCh. 27 - Prob. 93PCh. 27 - Prob. 94PCh. 27 - Prob. 95PCh. 27 - Prob. 96PCh. 27 - Prob. 97PCh. 27 - Prob. 98P
Knowledge Booster
Similar questions
- A solenoid with an iron core is 25 cm long and is wrapped with 100 turns of wire. When the current through the solenoid is 10 A, the magnetic field inside it is 2.0 T. For this current, what is the permeability of the iron? If the current is turned off and then restored to 10 A, will the magnetic field necessarily return to 2.0 T?arrow_forwardCheck Your Understanding What Is the magnitude of the induced electric field in Example 13.8 at t=0 if r= 6.0cm, R= 2.0cm,n = 2000 turnspermeter, I0= 2.0A, and a = 200s-1?arrow_forwardHow does the self- inductance per unit length near the center of a solenoid (away from the ends) compare with its value near the end of the solenoid?arrow_forward
- Assume the region to the right of a certain plane contains a uniform magnetic field of magnitude 1.00 mT and the field is zero in the region to the left of the plane as shown in Figure P22.71. An electron, originally traveling perpendicular to the boundary plane, passes into the region of the field. (a) Determine the time interval required for the electron to leave the field-filled region, noting that the electrons path is a semicircle. (b) Assuming the maximum depth of penetration into the field is 2.00 cm, find the kinetic energy of the electron.arrow_forwardHow is the percentage change in the strength of the magnetic field across the face of the toroid related to the percentage change in the radial distance from the axis of the toroid?arrow_forward12.7 Check Your Understanding What is the ratio of the magnetic field produced from using a finite formula over the infinite approximation for an angle of (a) 85°? (b) 89°? The solenoid has 1000 mins in 50 cm with a current of 1.0 A flowing through the coilsarrow_forward
- Suppose you wish to produce 1.2-T magnetic field in a toroid with an iron core for which =4.0103 . The toroid has a mean radius of 15 cm and is wound with 500 turns. What current is required?arrow_forwardTwo long, parallel wires cy equal currents in opposite directions. The radius of each wire is a, and the distance between the centers of the wires is d, Show that if the magnetic flux within the wires themselves can be ignored, the self-inductance of a length 1 of such a pair of wires is L 0 l in d1 a (Hint Calculate the magnetic flux through a rectangle of length 1 between the wires and then use L=N/Iarrow_forwardIs the magnetic field inside a toroid completely uniform? Almost uniform?arrow_forward
- 12.3 Check Your Understanding Using Example 12.3, keeping the currents the same in wires 1 and 3, what should the current be in wire 2 to counteract the magnetic fields horn wires 1 and 3 so that there is no net magnetic field at point P?arrow_forwardIs Ampere’s law valid for all closed paths? Why isn’t it normally useful for calculating a magnetic field?arrow_forwardThe current in a long solenoid of radius 3 cm and 20 turns cm is varied with time at a rate of 2 A/s. Find the electric field at a distance of 4 cm from die center of the solenoid.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning