Concept explainers
Proof of Limit Law 3 Suppose
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
Precalculus Enhanced with Graphing Utilities (7th Edition)
University Calculus: Early Transcendentals (4th Edition)
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
Precalculus
University Calculus: Early Transcendentals (3rd Edition)
Precalculus (10th Edition)
- Definition 1. Let ACR and c be a limit point of A. Let f: A → R be a function. We say that lim f(x) = ∞ if for all M>0 there exists > 0 I-C so that for all x & A, if 0 M. (a) Prove that lim 2-0 = ∞. (b) Construct a definition of what "lim f(x) = L" means. Prove that I→∞ lim = 0. 14x (c) What should " lim f(x) = ∞" mean? Give an example of a function x →∞ where this holds.arrow_forwardf(x) Let lim f(x) = - 8 and lim g(x) = - 4. Find lim Xa x-a Xa 9(x) O A. 10 О В. 2 OC. Oc. 2 O D. -4arrow_forward|x-1| If f (x) = , then lim f(x), lim f(x) and lim f (x) are... respectively x→1+ х—1 x→1- x→1 |x-1| Jika f (x) = , maka lim f(x), lim f(x) dan lim f (x) secara berturut-turut adalah... х-1 x→1+ x→1 1. O 1,-1, tidak ada (does not exist) 2. О -1, -1, -1 3. О 1, 1, 1 4. O -1, 1, tidak ada (does not exist)arrow_forward
- Asap handwritten solution acceptable Urgentarrow_forwardx²+1 Evaluate the limit of limx-→∞( -- ax – b) = 0 x+1arrow_forwardO Using the e- - definition of the limit, prove that if f and g are real valued functions such that lim f(x) = 3 and lim g(x) = 4 x→a HIG then lim (f(x) + g(x)) = 7. x-aarrow_forward
- Xー1 Question No1: Evaluate the limit limx-1i+g=3arrow_forward3-5, Use the graph to visually determine the limit. y=f(x) V-1, 3) 3. 4. (0, 1) 13,0) y=f(x) (0, -3) (1, -2) A. lim /(x) B. lim f(x) (-2, -5) A. lim f(x) A. lim f(x) B. LIm f(x) B. lim f(x)arrow_forwardlim f(x) exist, then exists .a is a constant function .b is a continuous at x = c .c lim f(x) = limf(x) .d xc+ xc-arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage