Concept explainers
1. Three objects are at rest in three beakers of water as shown.
- Compare the mass, volume, and density of the objects to the mass, volume, and density of the displaced water. Explain your reasoning in each case.
The comparison of mass, volume and density of the object with the displaced water.
Explanation of Solution
Given:
Three objects are at rest in three beakers of water as shown:
FormulaUsed:
Use Archimedes principle which is expressed as follows:
Here, the buoyant force is
Calculation:
For Object 1
Free body diagram of the 1st object is shown below:
As the object floats on the top of the surface, the displaced volume must be less than the volume of the object. Thus,
As the body is floating on the top surface, then the weight of the body is equal to the buoyant force. Thus, for equilibrium,
Thus, the mass of the object is equal to the mass of the displaced water.
For density, apply summation of force in the vertical direction as follows:
As the
For Object 2, Free body diagram of the 2nd object is shown below:
As the object floats inside the water, the displaced volume must be equal to the volume of the object. Thus,
As the body is floating inside the water then the weight of the body is equal to the buoyant force. Thus, for equilibrium,
Thus, the mass of the object is equal to the mass of the displaced water.
For density apply summation of force in the vertical direction as follows:
Thus, the density of the object must be equal to the density of water.
For Object 3,
Free body diagram of the 3rd object is shown below:
The displaced volume must be equal to the volume of the object as it is kept inside the tank completely. Thus,
As the body is not floating inside the water, then the weight of the body is more than the buoyant force. Thus, for equilibrium,
Thus, the mass of the object is more than the mass of the displaced water.
For density, apply summation of force in the vertical direction as follows:
Thus, the density of object must be more thanthe density of water.
Conclusion:
For object 1,
For object 2,
For object 3,
Want to see more full solutions like this?
Chapter 26 Solutions
Tutorials in Introductory Physics
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Human Biology: Concepts and Current Issues (8th Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Applications and Investigations in Earth Science (9th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- In an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air and an apparent mass of 0.0850 kg when completely submerged with lungs empty. (a) What mass of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.75 L is she able to float without treading water with her lungs filled with air?arrow_forward(a) What is the mass of a deep breath of air having a volume of 2.00 L? (b) Discuss the effect taking such a breath has on your body's volume and density.arrow_forward(a) Calculate the buoyant force on a 2.00-L helium balloon. (b) Given the mass of the rubber in the balloon is 1.50 g, what is the net vertical force on the balloon if it is let go? You can neglect the volume of the rubber.arrow_forward
- Suppose you are at the top of Mount Everest and you fill a water balloon. The air pressure at the top of Mount Everest is 58 kPa. a. What is the fractional change in the balloons volume V/Vi when you take it to sea level? b. If instead you take it 100 m below the surface of the ocean, what is the fractional change in its volume?arrow_forward(a) A rectangular gasoline tank can hold 50.0 kg of gasoline when full. What is the depth of the tank if it is 0.500-m wide by 0.900-m long? (b) Discuss whether this gas tank has a reasonable volume for a passenger car.arrow_forwardBird bones have air pockets in them to reduce their weight—this also gives them an average density significantly less than that of the bones of other animals. Suppose an ornithologist weighs a bird bone in air and in water and finds its mass is 45.0 g and its apparent mass when submerged is 3.60 g (the bone is watertight). (a) What mass of water is displaced? (b) What is the volume of the bone? (c) What is its average density?arrow_forward
- . A blimp used for aerial camera views of sporting events holds 200,000 ft3 of helium. (a) How much does the helium weigh? (b) What is the buoyant force on the blimp at sea level? (c) How much can the blimp lift (in addition to the helium)?arrow_forward(a) The pressure inside an alveolus with a 2.00104 -m radius is 1.40103 Pa, due to its fluid-lined walls. Assuming the alveolus acts like a spherical bubble, what is the surface tension of the fluid? (b) Identify the likely fluid. (You may need to extrapolate between values in Table 11.3.)arrow_forwardA small statue is recovered in an archaeological dig. Its weight is measured to be 96 lb, and its volume 0.08 ft3. (a) What is the statue's weight density? (b) What substance is it?arrow_forward
- (a) A water hose 2.00 cm in diameter is used to fill a 20.0-L bucket. If it takes 1.00 min to fill the bucket, what is the speed v at which water moves through the hose? (Note: 1 L = 1 000 cm3.) (b) The hose has a nozzle 1.00 cm in diameter. Find the speed of the water at the nozzle.arrow_forwardMany figures in the text show streamlines. Explain why fluid velocity is greatest where streamlines are closest together. (Hint: Consider the relationship between fluid velocity and the cross-sectional area through which it flows.)arrow_forwardYou are pumping up a bicycle tire with a hand pump, the piston of which has a 2.00-cm radius. (a) What force in newtons must you exert to create a pressure of 6.90105 Pa (b) What is unreasonable about this (a) result? (c) Which premises are unreasonable or inconsistent?arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University