College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Why is the following situation impossible? A 10.0-μF capacitor has plates with vacuum between them. The capacitor is charged so that it stores 0.050 0 J of energy. A particle with charge -3.00 μC is fired from the positive plate toward the negative plate with an initial kinetic energy equal to 1.00 x 10-4 J. The particle arrives at the negative plate with a reduced kinetic energy.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A parallel plate capacitor initially charged with a battery that can produce a potential difference of 100 V is disconnected after being charged. A dielectric material with a dielectric constant of 4.6 and a thickness of 6 mm is placed symmetrically in the middle of the plates of this capacitor, which has a plate area of 0.18 m^2 and a plate separation of 1.8 cm. What is the capacitance of the capacitor after the dielectric material is inserted?A)3,2x10^-12FB)3x10^-6FC)1,12x10^-10FD)11x10^-6Farrow_forwardA parallel plate capacitor is made from two aluminum foil sheets, each 3.8cm wide and 6.1 m long. Between the sheets is a Teflon strip of the same width and length that is 0.025mm thick. What is the energy stored in the capacitor when the charge on the capacitor is 30 uC?arrow_forwardA parallel plate capacitor has a charge of 5.50 x 10¬7C on one plate and -5.50 x 10-/ C on the other. The distance between the plates is increased by 46.0% while the charge on each plate stays the same. By how much does the energy stored in the capacitor increase? percentagearrow_forward
- A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference between the plates is 225 V. Assume a plate separation of d = 1.47 cm and a plate area of A = 25.0 cm². When the battery is removed, the capacitor is plunged into a container of distilled water. Assume distilled water is an insulator with a dielectric constant of 80.0. (a) Calculate the charge on the plates (in pC) before and after the capacitor is submerged. (Enter the magnitudes.) before after AV f (b) Determine the capacitance (in F) and potential difference (in V) after immersion. Cf= = = (c) Determine the change in energy (in nJ) of the capacitor. AU = nJ AV f (d) What If? Repeat parts (a) through (c) of the problem in the case that the capacitor is immersed in distilled water while still connected to the 225 V potential difference. Calculate the charge on the plates (in pC) before and after the capacitor is submerged. (Enter the magnitudes.) before after…arrow_forwardEach plate in a parallel-plate capacitor has an area of 0.460 m2 and is separated by 3.00 mm.The capacitor is charged to 4,000 kV using a power source that is subsequently disconnected. The space between the plates is then filled with a layer of dielectric material. Despite the drop in potential difference between the plates, the charge on each plate remains constant at 2.50 kV.Determine the system's initial capacitance value.arrow_forwardAn electron is released from rest at the negative plate of a parallel plate capacitor and accelerates to the positive plate (see the drawing). The plates are separated by a distance of 1.7 cm, and the electric field within the capacitor has a magnitude of 2.8 x 106 V/m. What is the kinetic energy of the electron just as it reaches the positive plate? Electric field Electron KE positive + + + + + + + +arrow_forward
- A cylindrical (7.000x10^0) µF capacitor is connected to a power supply and is charged from zero to a final charge of ±(8.7x10^-5) on its plates. How much work is done to charge the capacitor?arrow_forwardIn a parallel-plate capacitor, the two plates each have an area of 0.460 m2 and are spaced 3.00 mm apart.The capacitor is charged to a voltage of 4.00 kV using a power source that is then removed. The gap between the plates is then filled by a dielectric layer. The charge on each plate stays constant at 2.50 kV despite the reduction in the potential difference between the plates.Calculate the initial capacitance value of the system.arrow_forwardRegarding the Earth and a cloud layer 800 m above the Earth as the "plates" of a capacitor, calculate the capacitance. Assume the cloud layer has an area of 1 km2 and that the air between the cloud and the ground is pure and dry. nF Assume charge builds up on the cloud and on the ground until a uniform electric field of 2.0 106 N/C throughout the space between them makes the air break down and conduct electricity as a lightning bolt. What is the maximum charge the cloud can hold? Carrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON