COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 59QAP
To determine
(a)
The frequency and energy of the photon
To determine
(b)
The wavelength of photon that scattered at 900
To determine
(c)
The energy of the photon that scattered at 900
To determine
(d)
The energy of the recoil electron
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the energy of the following. Express your answers in units of electron volts, noting thet 1 eV = 1.60 x 10 19 J.
(a) a photon having a frequency of 7.40 x 10 Hz
3066.375 •
V ev
(b) a photon having a wavelength of 8.60 x 10 nm
3.56E-12
Calculate the frequency of light carresponding to the given wavelength and from the frequency calculate the energy of a photon with that wavelength. eV
Need Help?
Read It
Master It
MY NOTES
ASK YOUR TEACHER
PRACTICE ANOTHER
(a) If the power output of a 670 kHz radio station is 49.0 kW, how many photons per second are produced?
photons/s
(b) If the radio waves are broadcast uniformly in all directions, find the number of photons per second per square meter at a
distance of 125 km. Assume no reflection from the ground or absorption by the air.
photons/(s · m²)
Additional Materials
Sun
0.5 1.0 1.5
Wavelength in micrometers
0.1
2.0
Figure 1-2
Q2 Using Figure 1-2, answer/complete the following:
• In Figure 1-2, what three regions of the EM spectrum are included?
Identify the wavelength at which the Sun emits the most energy:
dmax intensity
Radiation intensity-
Chapter 26 Solutions
COLLEGE PHYSICS
Ch. 26 - Prob. 1QAPCh. 26 - Prob. 2QAPCh. 26 - Prob. 3QAPCh. 26 - Prob. 4QAPCh. 26 - Prob. 5QAPCh. 26 - Prob. 6QAPCh. 26 - Prob. 7QAPCh. 26 - Prob. 8QAPCh. 26 - Prob. 9QAPCh. 26 - Prob. 10QAP
Ch. 26 - Prob. 11QAPCh. 26 - Prob. 12QAPCh. 26 - Prob. 13QAPCh. 26 - Prob. 14QAPCh. 26 - Prob. 15QAPCh. 26 - Prob. 16QAPCh. 26 - Prob. 17QAPCh. 26 - Prob. 18QAPCh. 26 - Prob. 19QAPCh. 26 - Prob. 20QAPCh. 26 - Prob. 21QAPCh. 26 - Prob. 22QAPCh. 26 - Prob. 23QAPCh. 26 - Prob. 24QAPCh. 26 - Prob. 25QAPCh. 26 - Prob. 26QAPCh. 26 - Prob. 27QAPCh. 26 - Prob. 28QAPCh. 26 - Prob. 29QAPCh. 26 - Prob. 30QAPCh. 26 - Prob. 31QAPCh. 26 - Prob. 32QAPCh. 26 - Prob. 33QAPCh. 26 - Prob. 34QAPCh. 26 - Prob. 35QAPCh. 26 - Prob. 36QAPCh. 26 - Prob. 37QAPCh. 26 - Prob. 38QAPCh. 26 - Prob. 39QAPCh. 26 - Prob. 40QAPCh. 26 - Prob. 41QAPCh. 26 - Prob. 42QAPCh. 26 - Prob. 43QAPCh. 26 - Prob. 44QAPCh. 26 - Prob. 45QAPCh. 26 - Prob. 46QAPCh. 26 - Prob. 47QAPCh. 26 - Prob. 48QAPCh. 26 - Prob. 49QAPCh. 26 - Prob. 50QAPCh. 26 - Prob. 51QAPCh. 26 - Prob. 52QAPCh. 26 - Prob. 53QAPCh. 26 - Prob. 54QAPCh. 26 - Prob. 55QAPCh. 26 - Prob. 56QAPCh. 26 - Prob. 57QAPCh. 26 - Prob. 58QAPCh. 26 - Prob. 59QAPCh. 26 - Prob. 60QAPCh. 26 - Prob. 61QAPCh. 26 - Prob. 62QAPCh. 26 - Prob. 63QAPCh. 26 - Prob. 64QAPCh. 26 - Prob. 65QAPCh. 26 - Prob. 66QAPCh. 26 - Prob. 67QAPCh. 26 - Prob. 68QAPCh. 26 - Prob. 69QAPCh. 26 - Prob. 70QAPCh. 26 - Prob. 71QAPCh. 26 - Prob. 72QAPCh. 26 - Prob. 73QAPCh. 26 - Prob. 74QAPCh. 26 - Prob. 75QAPCh. 26 - Prob. 76QAPCh. 26 - Prob. 77QAPCh. 26 - Prob. 78QAPCh. 26 - Prob. 79QAPCh. 26 - Prob. 80QAPCh. 26 - Prob. 81QAPCh. 26 - Prob. 82QAPCh. 26 - Prob. 83QAPCh. 26 - Prob. 84QAPCh. 26 - Prob. 85QAPCh. 26 - Prob. 86QAPCh. 26 - Prob. 87QAPCh. 26 - Prob. 88QAPCh. 26 - Prob. 89QAPCh. 26 - Prob. 90QAPCh. 26 - Prob. 91QAPCh. 26 - Prob. 92QAPCh. 26 - Prob. 93QAPCh. 26 - Prob. 94QAPCh. 26 - Prob. 95QAPCh. 26 - Prob. 96QAPCh. 26 - Prob. 97QAPCh. 26 - Prob. 98QAPCh. 26 - Prob. 99QAPCh. 26 - Prob. 100QAPCh. 26 - Prob. 101QAPCh. 26 - Prob. 102QAPCh. 26 - Prob. 103QAPCh. 26 - Prob. 104QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) How far away must you be from a 650-kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume no reflections or absorption, as if you were in deep outer space. (b) Discuss the implications for detecting intelligent life in other solar systems by detecting their radio broadcasts.arrow_forwardWhich type of radiation is most suitable for the observation of diffraction patterns on crystalline solids; radio waves, visible light, or X-rays? Explain.arrow_forward(a) If the power output of a 650-kHz radio station is 50.0 kW, how many photons per second are produced? (b) If the radio waves are broadcast uniformly in all directions, find the number of photons per second per square meter at a distance of 100 km. Assume no reflection from the ground or absorption by the air.arrow_forward
- The momentum of light, as it is for particles, is exactly reversed when a photon is reflected straight back from a mirror, assuming negligible recoil of the mirror. The change in momentum is twice the photon’s incident momentum, as it is for the particles. Suppose that a beam of light has an intensity 1.0kW/m2 and falls on a -2.0-m2 area of a minor and reflects from it. (a) Calculate the energy reflected in 1.00 s. (b) What is the momentum imparted to the mirror? (c) Use Newton’s second law to find the force on the mirror. (d) Does the assumption of no-recoil for the mirror seem reasonable?arrow_forwardAn x ray tube has an applied voltage of 100 kV. (a) What is the most energetic x-ray photon it can produce? Express your answer in electron volts and joules. (b) Find the wavelength of such an X—ray.arrow_forward(a) What is the ratio of power outputs by two microwave ovens having frequencies of 950 and 2560 MHz, if they emit the same number of photons per second? (b) What is the ratio of photons per second if they have the same power output?arrow_forward
- Which aspects of the photoelectric effect cannot be explained without photons? Which can be explained without photons? Are the latter inconsistent with the existence of photons?arrow_forwardThe velocity of a proton emerging from a Van de Graaff accelerator is 25.0% of the speed of light. (a) What is the proton's wavelength? (b) What is its kinetic energy, assuming it is nonrelativistic? (c) What was the equivalent voltage through which it was accelerated?arrow_forwardIntegrated Concepts A certain heat lamp emits 200 W of mostly IR radiation averaging 1500 nm in wavelength. (a) What is the average photon energy in joules? (b) How many of these photons are required to increase the temperature of a person's shoulder by 2.0°C, assuming the affected mass is 4.0 kg with a specific heat of 0.83kcal/kgC. Also assume no other significant heat transfer. (c) How long does this take?arrow_forward
- How many photons per second are emitted by the antenna of a microwave oven, if its power output is 1.00 kW at a frequency of 2560 MHz?arrow_forwardThe radiant energy from the sun reaches its maximum at a wavelength of about 500.0 nm. What is the approximate temperature of the sun’s surface?arrow_forwardI Review | Constants Periodic Table he human eye can barely detect a star whose intensity at the earth's urface is 1.6 x 10-11 W/m? Part A If the dark adapted eye has a pupil diameter of 6.0 mm , how many photons per second enter the eye from the star? Assume the starlight has a wavelength of 550 nm ? X•10" N = Submit Previous Answers Request Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning