College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 13CQ
To determine
Reason of mass less photon having momentum.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Photons of light have zero mass. How is it possible that they have momentum?
A proton with mass 1.7 x 10-27 kg and moves with velocity 2.6 x 106 m/s to the right. What is its relativistic momentum?
6.2 x 10-21 kg m/s
6.9 x 10-21 kg m/s
4.4 x 10-21 kg m/s
5.4 x 10-21 kg m/s
A linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 29 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.
Chapter 26 Solutions
College Physics
Ch. 26.3 - Prob. 26.1QQCh. 26.4 - Suppose youre an astronaut being paid according to...Ch. 26.4 - True or False: People traveling near the speed of...Ch. 26.4 - You are packing for a trip to another star, and on...Ch. 26.4 - You observe a locket moving away from you. (i)...Ch. 26.7 - Prob. 26.6QQCh. 26.7 - Prob. 26.7QQCh. 26 - Choose the option from each pair that makes the...Ch. 26 - Choose the option that makes the following...Ch. 26 - Choose the option that makes the following...
Ch. 26 - Choose the option from each pair that makes the...Ch. 26 - A spacecraft with the shape of a sphere of...Ch. 26 - What two speed measurements will two observers in...Ch. 26 - The speed of light in water is 2.30 108 m/s....Ch. 26 - With regard to reference frames, how does general...Ch. 26 - Give a physical argument that shows it is...Ch. 26 - It is said that Einstein, in his teenage years,...Ch. 26 - List some ways our day-to-day lives would change...Ch. 26 - Two identically constructed clocks are...Ch. 26 - Prob. 13CQCh. 26 - Imagine an astronaut on a trip to Sirius, which...Ch. 26 - Explain why, when defining the length of a rod, it...Ch. 26 - Prob. 16CQCh. 26 - The control panel on a spaceship contains a light...Ch. 26 - A spaceship moves past Earth with a speed of...Ch. 26 - If astronauts could travel at v = 0.950c, we on...Ch. 26 - a meterstick moving at 0.900c relative to the...Ch. 26 - The length of a moving spaceship is 28.0 m...Ch. 26 - An astronaut at rest on Earth has a heart rate of...Ch. 26 - The average lifetime of a pi meson in its own...Ch. 26 - An astronaut is traveling in a space vehicle that...Ch. 26 - A muon formed high in Earth's atmosphere travels...Ch. 26 - A star is 15.0 light-years (ly) from Earth. (a) At...Ch. 26 - The proper length of one spaceship is three times...Ch. 26 - A car traveling at 35.0 m/s takes 26.0 minutes to...Ch. 26 - A supertrain of proper length 1.00 102 m travels...Ch. 26 - A box is cubical with sides of proper lengths L1 =...Ch. 26 - Prob. 15PCh. 26 - Prob. 16PCh. 26 - Prob. 17PCh. 26 - Prob. 18PCh. 26 - An unstable particle at rest breaks up into two...Ch. 26 - Spaceship R is moving to the right at a speed of...Ch. 26 - An electron moves to the right with a speed of...Ch. 26 - A spaceship travels at 0.750c relative to Earth....Ch. 26 - A spaceship is moving away from Earth at 0.900c...Ch. 26 - Two identical spaceships with proper lengths of...Ch. 26 - Spaceship A moves away from Earth at a speed of...Ch. 26 - A pulsar is a stellar object that emits light in...Ch. 26 - A rocket moves with a velocity of 0.92c to the...Ch. 26 - A proton moves with a speed of 0.950c. Calculate...Ch. 26 - Protons in an accelerator at the Fermi National...Ch. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - A chain of nuclear reactions in the Suns core...Ch. 26 - An unstable particle with a mass equal to 3.34 ...Ch. 26 - Prob. 35PCh. 26 - Prob. 36PCh. 26 - Prob. 37APCh. 26 - Prob. 38APCh. 26 - Prob. 39APCh. 26 - A spring of force constant k is compressed by a...Ch. 26 - A star is 5.00 ly from the Earth. At what speed...Ch. 26 - An electron has a total energy equal to five times...Ch. 26 - An astronaut wishes to visit the Andromeda galaxy,...Ch. 26 - An alarm clock is set to sound in 10.0 h. At t =...Ch. 26 - Owen and Dina are at rest in frame S, which is...Ch. 26 - An observer in a coasting spacecraft moves toward...Ch. 26 - A spaceship of proper length 300. m takes 0.75 s...Ch. 26 - The cosmic rays of highest energy are protons that...Ch. 26 - Prob. 49APCh. 26 - Prob. 50APCh. 26 - The muon is an unstable particle that...Ch. 26 - Prob. 52APCh. 26 - The identical twins Speedo and Goslo join a...Ch. 26 - An interstellar space probe is launched from...Ch. 26 - An observer moving at a speed of 0.995c relative...Ch. 26 - An alien spaceship traveling 0.600c toward Earth...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled S in Figure P39.85. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft?arrow_forward(a) Find the momentum of a 1.00109 kg asteroid heading towards the Earth at 30.0 km/s. (b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that =1+(1/2)v2/c2 at low velocities.)arrow_forwardAn object having mass 900 kg and traveling at speed 0.850c collides with a stationary object having mass 1 400 kg. The two objects stick together. Find (a) the speed and (b) the mass of the composite object.arrow_forward
- An observer in a rocket moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P1.30. The mirror is stationary with respect to S. A light pulse emitted by the rocket travels toward the mirror and is reflected back to the rocket. The front of the rocket is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the rocket. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the front of the rocket? Figure P1.30arrow_forwardWhat is the velocity of an electron that has a momentum of 3.041021kgm/s ? Note that you must calculate the velocity to at least four digits to see the difference from c.arrow_forwardAn enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forward
- In a frame at rest with respect to the billiard table, a billiard ball of mass m moving with speed v strikes another billiard ball of mass m at rest. The first ball comes to rest after the collision while the second ball takes off with speed v in the original direction of the motion of the first ball. This shows that momentum is conserved in this frame. (a) Now, describe the same collision from the perspective of a frame that is moving with speed v in the direction of the motion of the first ball. (b) Is the momentum conserved in this frame?arrow_forward(a) Calculate for a proton that has a momentum of 1.00 kgm/s. (b) What is its speed? Such protons form a rare component of cosmic radiation with uncertain origins.arrow_forward(a) What is the momentum of a 2000 kg satellite orbiting at 4.00 km/s? (b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that =1+(1/2)v2/c2 at low velocities.)arrow_forward
- An atomic clock is placed in a jet airplane. The clock measures a time interval of 3600 s when the jet moves with a speed of 400 m/s. How much longer or shorter a time interval does an identical clock held by an observer on the ground measure? (Hint: For , γ ≈ 1 + v2/2c2.)arrow_forwardAn observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P26.46. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft? Figure P26.46arrow_forwardAs measured by observers in a reference frame S, a particle having charge q moves with velocity v in a magnetic field B and an electric field E. The resulting force on the particle is then measured to be F = q(E + v × B). Another observer moves along with the charged particle and measures its charge to be q also but measures the electric field to be E′. If both observers are to measure the same force, F, show that E′ = E + v × B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning