26.3-26.6 Simultaneity, Time Dilation, Length Contraction, and Spacetime Diagrams
Extending life? Free neutrons have an average lifetime of about 1000 s before transforming into an electron, a proton, and an anti-neutrino. If a neutron leaves the Sun at a speed of 0.999c, (a) how long does it live according to an Earth observer? (b) Will such a neutron reach Pluto (
Want to see the full answer?
Check out a sample textbook solutionChapter 26 Solutions
College Physics
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Brock Biology of Microorganisms (15th Edition)
Campbell Biology (11th Edition)
- (a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward(a) Wliat is the approximate velocity relative to us of a galaxy near the edge of the known universe, some 10 Gly away? (b) What fraction of the speed of light is this? Note that we have observed galaxies moving away from us at greater than 0.9c.arrow_forwardA pulsar is a stellar object that emits light in short bursts. Suppose a pulsar with a speed of 0.950c approaches Earth, and a rocket with a speed of 0.995c heads toward the pulsar. (Both speeds are measured in Earth's frame of reference.) If the pulsar emits 10.0 pulses per second in its own frame of reference, at what rate are the pulses emitted in the rockets frame of reference?arrow_forward
- Near the center of our galaxy, hydrogen gas is moving directly away from us in its orbit about a black hole. We receive 19(N) nm electromagnetic radiation and know that it was 1875 nm when emitted by the hydrogen gas. What is the speed of the gas?arrow_forwardA spacecraft built in the shape of a sphere moves past an observer on the Earth with a speed of 0.500c. What shape does the observer measure for the spacecraft as it goes by? (a) a sphere (b) a cigar shape, elongated along the direction of motion (c) a round pillow shape, flattened along the direction of motion (d) a conical shape, pointing in the direction of motionarrow_forwardAn astronaut is traveling in a space vehicle moving at 0.500c relative to the Earth. The astronaut measures her pulse rate at 75.0 beats per minute. Signals generated by the astronauts pulse are radioed to the Earth when the vehicle is moving in a direction perpendicular to the line that connects the vehicle with an observer on the Earth. (a) What pulse rate does the Earth-based observer measure? (b) What If? What would be the pulse rate if the speed of the space vehicle were increased to 0.990c?arrow_forward
- (a) Calculate the relativistic quantity =11v2/c2for 1.00-TeV protons produced at Fermilab. (b) If such a proton created a +having the same speed, how long would its life be in the laboratory? (c) How far could it travel in this time?arrow_forwardAn interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 70.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.0 years as measured in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (b) How far is the probe from Earth when its batteries fail as measured by mission control? (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? (d) For what total time after launch are data received from the probe by mission control? Note dial radio waves travel at the speed of light and fill the space between the probe and Earth at the time the battery fails.arrow_forward(a) How long does it take the astronaut in Example 28.2 to travel 4.30 ly at 0.99944c (as measured by the Earth-bound observer)? (b) How long does it take according to the astronaut? (c) Verify that these two times are related through time dilation with =30.00 as given.arrow_forward
- Imagine an astronaut on a trip to Sirius, which lies 8 light-years from Earth. Upon arrival at Sirius, the astronaut finds that the trip lasted 6 years. If the trip was made at a constant speed of 0.8c, how can the 8-light-year distance be reconciled with the 6-year duration?arrow_forwardYou have been hired as an expert witness in the future by an attorney representing the driver of a spacecraft. The driver is accused of exceeding the galactic speed limit of 0.700c relative to the Earth while being chased by a galactic police spacecraft. The driver claims he is innocent, that his speed was well below that limit. You have been provided with the following data: the police spacecraft was traveling at 0.600c while chasing the driver and a technician on the police spacecraft measured the suspected spacecraft as traveling at 0.300c relative to the police spacecraft. What advice should you give the attorney?arrow_forward(a) How fast would an athlete need to be running for a 100-m race to look 100 yd long? (b) Is the answer consistent with the fact that relativistic effects are difficult to observe in ordinary circumstances? Explain.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning