Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 51Q
To determine
The wavelength at which the cosmic microwave is most intense.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assuming stars to behave as black bodies stefan-boltzmann law to show that the luminosity of a star is related to its surface temperature and size in the following way:
L = 4(3.14)R^2oT^4
where o= 5.67 ×10^-8 Wm^-2 K-4 is the stefan- boltzmann constant. Then use this expression together with the knowledge that the sun has a surface temperature of 5700k and radius 695 500km to calculate the luminosity of the Sun in units of Watts
Cosmic Microwave Background
8. The Cosmic Microwave Background (CMB) acts as a perfect black body whose energy spectrum(energy density per unit volume per unit frequency) is given by the expression : (image attached)
Problem 2: Black hole – the ultimate blackbody
A black hole emits blackbody radiation called Hawking radiation. A black hole with mass
M has a total energy of Mc², a surface area of 167G²M² /c*, and a temperature of
hc³/167²KGM.
a) Estimate the typical wavelength of the Hawking radiation emitted by a 1 solar
mass black hole (2 × 103ºkg). Compare your answer to the size of the black hole.
b) Calculate the total power radiated by a one-solar mass black hole.
c) Imagine a black hole in empty space, where it emits radiation but absorbs nothing.
As it loses energy, its mass must decrease; one could say "evaporates". Derive a
differential equation for the mass as a function of time, and solve to obtain an
expression for the lifetime of a black hole in terms of its mass.
Chapter 25 Solutions
Universe: Stars And Galaxies
Ch. 25 - Prob. 1QCh. 25 - Prob. 2QCh. 25 - Prob. 3QCh. 25 - Prob. 4QCh. 25 - Prob. 5QCh. 25 - Prob. 6QCh. 25 - Prob. 7QCh. 25 - Prob. 8QCh. 25 - Prob. 9QCh. 25 - Prob. 10Q
Ch. 25 - Prob. 11QCh. 25 - Prob. 12QCh. 25 - Prob. 13QCh. 25 - Prob. 14QCh. 25 - Prob. 15QCh. 25 - Prob. 16QCh. 25 - Prob. 17QCh. 25 - Prob. 18QCh. 25 - Prob. 19QCh. 25 - Prob. 20QCh. 25 - Prob. 21QCh. 25 - Prob. 22QCh. 25 - Prob. 23QCh. 25 - Prob. 24QCh. 25 - Prob. 25QCh. 25 - Prob. 26QCh. 25 - Prob. 27QCh. 25 - Prob. 28QCh. 25 - Prob. 29QCh. 25 - Prob. 30QCh. 25 - Prob. 31QCh. 25 - Prob. 32QCh. 25 - Prob. 33QCh. 25 - Prob. 34QCh. 25 - Prob. 35QCh. 25 - Prob. 36QCh. 25 - Prob. 37QCh. 25 - Prob. 38QCh. 25 - Prob. 39QCh. 25 - Prob. 40QCh. 25 - Prob. 41QCh. 25 - Prob. 42QCh. 25 - Prob. 43QCh. 25 - Prob. 44QCh. 25 - Prob. 45QCh. 25 - Prob. 46QCh. 25 - Prob. 47QCh. 25 - Prob. 48QCh. 25 - Prob. 49QCh. 25 - Prob. 50QCh. 25 - Prob. 51QCh. 25 - Prob. 52QCh. 25 - Prob. 53QCh. 25 - Prob. 54QCh. 25 - Prob. 55Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The CMB contains roughly 400 million photons per m3. The energy of each photon depends on its wavelength. Calculate the typical wavelength of a CMB photon. Hint: The CMB is blackbody radiation at a temperature of 2.73 K. According to Wien’s law, the peak wave length in nanometers is given by max=3106T . Calculate the wavelength at which the CMB is a maximum and, to make the units consistent, convert this wavelength from nanometers to meters.arrow_forward1.2 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0 0.5 10 Wavelength A in mm c) Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the current temperature of the CMB. Based on your estimate, what would the temperature of the CMB have been at a redshift of z = 5000? The left hand diagram above shows the results from observations of the Cosmic Microwave Radiated Intensity per Unit Wavelength (16° Watts/m per mm)arrow_forwardThe Andromeda Galaxy, M31, is the closest large spiral galaxy to our Milky Way. When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 655 nm.-Calculate z, being careful with the sign.-How fast is it moving in km/s?-Is it redshifted or blueshifted? Is it moving towards or away from us? answer to three significant figures.arrow_forward
- Would you expect to be able to detect an H II region in X-ray emission? Why or why not? (Hint: You might apply Wien’s law)arrow_forwardWhy would we not expect to detect X-rays from a disk of matter about an ordinary star?arrow_forwardH II regions can exist only if there is a nearby star hot enough to ionize hydrogen. Hydrogen is ionized only by radiation with wavelengths shorter than 91.2 nm. What is the temperature of a star that emits its maximum energy at 91.2 nm? (Use Wien’s law from Radiation and Spectra.) Based on this result, what are the spectral types of those stars likely to provide enough energy to produce H II regions?arrow_forward
- Why is it difficult to determine where cosmic rays come from?arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardGiven that only about 5% of the galaxies visible in the Hubble Deep Field are bright enough for astronomers to study spectroscopically, they need to make the most of the other 95%. One technique is to use their colors and apparent brightnesses to try to roughly estimate their redshift. How do you think the inaccuracy of this redshift estimation technique (compared to actually measuring the redshift from a spectrum) might affect our ability to make maps of large-scale structures such as the filaments and voids shown in Figure 28.21? Figure 28.21 Sloan Digital Sky Survey Map of the Large-Scale Structure of the Universe. This image shows slices from the SDSS map. The point at the center corresponds to the Milky Way and might say “You Are Here!” Points on the map moving outward from the center are farther away. The distance to the galaxies is indicated by their redshifts (following Hubble’s law), shown on the horizontal line going right from the center. The redshift z=/ , where is the difference between the observed wavelength and the wavelength emitted by a nonmoving source in the laboratory. Hour angle on the sky is shown around the circumference of the circular graph. The colors of the galaxies indicate the ages of their stars, with the redder color showing galaxies that are made of older stars. The outer circle is at a distance of two billion light-years from us. Note that red (older stars) galaxies are more strongly clustered than blue galaxies (young stars). The unmapped areas are where our view of the universe is obstructed by dust in our own Galaxy. (credit: modification of work by M. Blanton and the Sloan Digital Sky Survey)arrow_forward
- Why do molecules, including H2 and more complex organic molecules, only form inside dark clouds? Why don’t they fill all interstellar space?arrow_forwardIf Bν ~ 10-5 Jy Ω-1, what is the brightness temperature (TB) at 1 GHz?arrow_forwardHi, can you please assist with C? & For reference: A = 0.0011 m B = 1.807 x 10^-22 Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning