Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 48P
An implanted pacemaker supplies the heart with 72 pulses per minute, each pulse providing 6.0 V for 0.65 ms. The resistance of the heart muscle between the pacemaker’s electrodes is 550 Ω. Find (a) the current that flows during a pulse, (b) the energy delivered in one pulse, and (c) the average power supplied by the pacemaker.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solar cell generates a potential difference of 0.17 V
when a 550 resistor is connected across it, and a
potential difference of 0.24 V when a 970 resistor
is substituted. What are the (a) internal resistance
and (b) emf of the solar cell? (c) The area of the cell is
1.2 cm² and the rate per unit area at which it receives
energy from light is 4.9 mW/cm². What is the
efficiency of the cell for converting light energy to
thermal energy in the 970 2 external resistor?
(a) Number
(b) Number
(c) Number
i
Units
Units
Units
Ω
V
per
A TV works properly under the voltage of ΔV = 120 V with power P = 1620 W.
(a) Express the current I through the power P and the voltage ΔV.
I=
(b) Calculate the working current of the TV in A.
I=
(c) Express the resistance R through the voltage ΔV and the current I.
R=
(d) Calculate the numerical value of R in Ω.
R=
A solar cell generates a potential difference of 0.10 V when a 500ohm resistor is connected across it, and a potential difference of 0.15 V when a 1000 ohm resistor is substituted.What are the (a) internal resistance and (b) emf of the solar cell? (c) The area of the cell is 5.0 cm2, and the rate per unit area at which it receives energy from light is 2.0 mW/cm2.What is the efficiency of the cell for converting light energy to thermal energy in the 1000 ohm external resistor?
Chapter 24 Solutions
Essential University Physics (3rd Edition)
Ch. 24.1 - Prob. 24.1GICh. 24.2 - Two wires carry the same current I. Wire A has a...Ch. 24.3 - Prob. 24.3GICh. 24.4 - You put a variable resistance across a battery...Ch. 24.5 - Todays power tools are often cordless, powered by...Ch. 24 - Explain the difference between current and current...Ch. 24 - A constant electric field generally produces a...Ch. 24 - When caught in the open in a lightning storm, a...Ch. 24 - Good conductors of electricity are often good...Ch. 24 - Why can current persist forever in a...
Ch. 24 - Does an electric stove burner draw more current...Ch. 24 - A person and a cow are standing in a field when...Ch. 24 - You put a 1.5-V battery across a piece of...Ch. 24 - Prob. 9FTDCh. 24 - A 50-W and a 100-W lightbulb are both designed to...Ch. 24 - Equation 24.8a suggests that no power can be...Ch. 24 - Whats wrong with this news report: A power-line...Ch. 24 - A wire carries 1.5 A. How many electrons pass...Ch. 24 - A 12-V car battery is rated at 80 ampere-hours,...Ch. 24 - Biologists measure the total current due to...Ch. 24 - The National Electrical Code specifies a maximum...Ch. 24 - The electric field in an aluminum wire is 85 mV/m....Ch. 24 - What electric field is necessary to drive a 7.5-A...Ch. 24 - Prob. 19ECh. 24 - A 1.0-cm-diameter rod carries a 50-A current when...Ch. 24 - Use Table 24.1 to determine the conductivity of...Ch. 24 - Find the resistance of a heating coil that draws...Ch. 24 - Prob. 23ECh. 24 - Whats the current in a 47-k resistor with 110 V...Ch. 24 - The third rail that carries electric power to a...Ch. 24 - What current flows when a 45-V potential...Ch. 24 - A uniform wire of resistance R is stretched until...Ch. 24 - A cars starter motor draws 125 A with 11 V across...Ch. 24 - A 4.5-W flashlight bulb draws 750 mA. (a) At what...Ch. 24 - A watch uses energy at the rate of 240 W. What...Ch. 24 - A 35- electric stove burner consumes 1.5 kW of...Ch. 24 - An incandescent lightbulb draws 0.50 A, while a...Ch. 24 - Though rare, electrocution has been reported under...Ch. 24 - You touch a defective appliance while standing on...Ch. 24 - You have a typical resistance of 100 k. (a) How...Ch. 24 - An ion channel in a cell membrane carries 2.4 pA...Ch. 24 - A lightbulb filament has diameter 0.050 mm and...Ch. 24 - A gold film in an integrated circuit measures 1.85...Ch. 24 - A copper wire joins an aluminum wire whose...Ch. 24 - Prob. 40PCh. 24 - In a study of proteins mediating cell membrane...Ch. 24 - Theres a 2.5-V potential difference between...Ch. 24 - The maximum safe current in 12-gauge...Ch. 24 - Silver and iron wires of the same length and...Ch. 24 - You have a cylindrical piece of material 2.4 cm...Ch. 24 - How must the diameters of copper and aluminum wire...Ch. 24 - Youre writing the instruction manual for a power...Ch. 24 - An implanted pacemaker supplies the heart with 72...Ch. 24 - A solid rectangular iron bar measures 0.50 cm by...Ch. 24 - Each pulse produced by the Taser described in the...Ch. 24 - The Nissan Leaf is an all-electric car powered by...Ch. 24 - An electric heater is tested by immersing it in...Ch. 24 - Magnetic effects involving Jupiters moon Io result...Ch. 24 - At a particular point in a material with...Ch. 24 - A thermally insulated container of seawater...Ch. 24 - Youre heading out for spring break, but your car...Ch. 24 - Two cylindrical resistors are made from the same...Ch. 24 - Youre working on a new high-speed rail system. It...Ch. 24 - A 100%-efficicnt electric motor is lifting a 15-N...Ch. 24 - A power plant produces 1000 MW to supply a city 40...Ch. 24 - Youre estimating costs for a new power line with...Ch. 24 - A 240-V electric motor is 90% efficient, meaning...Ch. 24 - A metal bar has rectangular cross section 5.0 cm...Ch. 24 - An immersion-type heating coil is connected to a...Ch. 24 - The resistivity of copper as a function of...Ch. 24 - Each atom in aluminum contributes about 3.5...Ch. 24 - Prob. 67PCh. 24 - Figure 24.20 shows a truncated cone of material...Ch. 24 - The current density in a particle beam with...Ch. 24 - Prob. 70PCh. 24 - You work for an automobile manufacturer developing...Ch. 24 - During the brownout, the current in conductors...Ch. 24 - Which of the following occurs in the conductors of...Ch. 24 - During the brownout, the power dissipated in...Ch. 24 - Prob. 75PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
What dipeptides would be formed by heating a mixture of valine and N-protected leucine?
Organic Chemistry (8th Edition)
A wild-type fruit fly (heterozygous for gray body color and normal wings) is mated with a black fly with vestig...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- > Lightbulb A is marked "60.0 W 120 V," and lightbulb B is marked "100 W 120 V." These labels mean that each lightbulb has its respective power delivered to it when it is connected to a constant 120-V source. (a) Find the resistance of each lightbulb. Ω RA RB Ω = (b) During what time interval does 1.20 C pass into lightbulb A? S (c) Is this charge different upon its exit versus its entry into the lightbulb? Yes No Explain. This answer has not been graded yet. (d) In what time interval does 1.40 J pass into lightbulb A? S (e) By what mechanisms does this energy enter and exit the lightbulb? Explain. This answer has not been graded yet. (f) Find the cost of running lightbulb A continuously for 30.0 days, assuming the electric company sells its product at $0.110 per kWh. (arrow_forwardA capacitor that is initially uncharged is connected in series with a resistor and a 300.0 V emf source with negligible internal resistance. Just after the circuit is completed, the current through the resistor is 0.950 mA and the time constant for the circuit is 6.00 s. (A) What is the resistance of the resistor? Express your answer with the appropriate units. (B) What is the capacitance of the capacitor? Express your answer with the appropriate units.arrow_forwardLightbulb A is marked "10 W 120 V", and lightbulb B is marked "25 W 120 V". These labels mean that each lightbulb has its respective power delivered to it when it is connected to a constant 120-V source. (a) Find the resistance of each lightbulb. (b) During what time interval does 1.70 C pass into lightbulb A? (c) In what time interval does 2.00 J pass into lightbulb A? (d) Find the cost of running lightbulb A continuously for 16.0 days, assuming the electric company sells its product at $0.110 per kWh. See image for full questionarrow_forward
- In (Figure 1) the battery has emf 45.0 V and negligible internal resistance. R₁ = 7.00 2. The current through R₁ is 1.50 A and the current through R3 = 4.50 A. Figure ww R₁ www R₂ www- R₂ < 1 of 1 ▼ What is the resistance R₂? Express your answer with the appropriate units. R₂: Submit Part B R3 11 .0 Submit μA Value What is the resistance R3 ? Express your answer with the appropriate units. Request Answer HÅ Value Units Request Answer Units ?arrow_forwardDuring open-heart surgery, a defibrillator can be used to bring a patient out of cardiac arrest. During such a procedure, the resistance of the path is 525 Ω and a 11.5 mA current is needed. What voltage should be applied in V?arrow_forwardA cell phone operates on a V = 3.61 V battery. If the resistance within the circuitry of the phone is R = 15.4 Ω, what power does it consume? Your answer should be in watts (W).arrow_forward
- A battery has emf E and internal resistance r = 2.00 Ω. A 12.0 Ω resistor is connected to the battery, and the resistor consumes electrical power at a rate of 96.0 J/ What is the emf of the battery?arrow_forward(a) A well-insulated electric water heater warms 125 kg of water from 20.0°C to 53.0°C in 33.0 min. Find the resistance (in Q2) of its heating element, which is connected across a 240 V potential difference. Ω (b) What If? How much additional time (in min) would it take the heater to raise the temperature of the water from 53.0°C to 100°C? min (c) What would be the total amount of time (in min) required to evaporate all of the water in the heater starting from 20.0°C? minarrow_forwardA cylindrical aluminum pipe of length 1.41 m has an inner radius of 1.72 ×10-3 m and an outer radius of 3.10 ×10-3 m. The interior of the pipe is completely filled with copper. What is the resistance of this unit? (Hint: Imagine that the pipe is connected between the terminals of a battery and decide whether the aluminum and copper parts of the pipe are in series or in parallel.)arrow_forward
- The cord from an appliance is too short to reach the wall outlet in your room. You have two extension cords to choose from. (a) Find the voltage drop in the first extension cord having a 0.0680 Ω resistance and through which 5.20 A is flowing. V(b) The second extension cord is cheaper and utilizes thinner wire. It has a resistance of 0.680 Ω and the current flowing through it is 5.20 A. By what amount does the voltage supplied to the appliance change when the first extension cord is replaced by the second? Varrow_forwardA heart defibrillator being used on a patient has an RC time constant of 11.5 ms due to the resistance of the patient's body and the capacitance of the defibrillator.Randomized Variables τ = 11.5 msC = 7.5 μFV = 15 kV a) If the defibrillator has an 7.5 μF capacitance, what is the resistance of the path through the patient in kΩ? (You may neglect the capacitance of the patient's body and the resistance of the defibrillator.) b) If the initial voltage is 15 kV, how long does it take to decline to 6.00 × 102 V in ms?arrow_forwardEach of the six real batteries in the figure has an emf of 20.3 V and a resistance of 4.120. (a) What is the current through the (external) resistance R=3.57 0? (b) What is the potential difference across each battery? (c) What is the power of each battery? (d) At what rate does each battery transfer energy to internal thermal energy? R (a) Number Units Units (b) Number Units (c) Number Units (d) Numberarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY