(a)
Interpretation:
Kinetic Energy of an
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Kinetic energy of a particle can be using the below mentioned formula,
(a)
Explanation of Solution
Given data is shown below:
Kinetic Energy of an
Kinetic Energy of an
(b)
Interpretation:
Number of
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is,
(b)
Explanation of Solution
Given data is shown below:
Kinetic Energy of an
A kilogram of
Energy produced by the annihilation of one
Number of
Number of
(c)
Interpretation:
Energy released during the fusion of 4 Hydrogen atoms forming Helium-4 has to be determined using the given data.
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is,
Change in mass of a given reaction can be determined as given,
(c)
Explanation of Solution
Given data is shown below:
- Calculate the mass difference for the formation of Helium-4:
Mass difference of the reaction can be calculated as given,
Mass difference during the fusion of 4 Hydrogen atoms is
- Calculate total mass difference in kilogram:
Mass difference during the fusion of
- Calculate energy released:
Energy released is calculated as given below,
Energy released during the fusion of 4 Hydrogen atoms forming Helium-4 is
(d)
Interpretation:
Increase in energy produce by the fusion of part (c) comparing with
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is,
Change in mass of a given reaction can be determined as given,
(d)
Explanation of Solution
In part (b), Energy produced by the annihilation of one
Therefore, energy generated by
In part (c), Energy released during the fusion of 4 Hydrogen atoms forming Helium-4 is
Increase in energy is determined as follows,
Energy increase is
(e)
Interpretation:
Energy released when
Concept Introduction:
Nuclear binding energy: It is the energy that requires for the breaking one mole of nuclei of an element to its individual nucleons.
Nuclear binding energy can be calculated by Einstein’s mass energy equivalence relationship that is,
Change in mass of a given reaction can be determined as given,
(e)
Explanation of Solution
Given data is shown below:
- Calculate the mass difference for the formation of Helium-4:
Mass difference of the reaction can be calculated as given,
Mass difference during the fusion of 3 Hydrogen atoms is
- Calculate total mass difference in kilogram:
Mass difference during the fusion of
- Calculate energy released:
Energy released is calculated as given below,
Energy released during the fusion of 3 Hydrogen atoms forming Helium-3 is
Energy released during the fusion of 4 Hydrogen atoms forming Helium-4 is
Therefore, Chief Engineer should advise Captain not to change the technology and to keep the current technology.
Want to see more full solutions like this?
Chapter 24 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY