Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
5th Edition
ISBN: 9780134689531
Author: Lee Johnson, Dean Riess, Jimmy Arnold
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.4, Problem 22E
In Exercises 21-22, find a unit normal for the given plane.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume {u1, U2, u3, u4} does not span R³.
Select the best statement.
A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set.
B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³.
C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set.
D. {u1, U2, u3} cannot span R³.
E. {U1, U2, u3} spans R³ if u̸4 is the zero vector.
F. none of the above
Select the best statement.
A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors
are distinct.
n
B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0
excluded spans Rª.
○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n
vectors.
○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors
spans Rn.
E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn.
F. none of the above
Which of the following sets of vectors are linearly independent? (Check the boxes for linearly independent sets.)
☐ A.
{
7
4
3
13
-9
8
-17
7
☐ B.
0
-8
3
☐ C.
0
☐
D.
-5
☐ E.
3
☐ F.
4
TH
Chapter 2 Solutions
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 2.1 - In Exercises 1-4, graph the geometric vector u=AB...Ch. 2.1 - Prob. 2ECh. 2.1 - Prob. 3ECh. 2.1 - Prob. 4ECh. 2.1 - Let u=AB and v=CD where...Ch. 2.1 - In Exercises 6-9, find the unspecified coordinates...Ch. 2.1 - In Exercises 6-9, find the unspecified coordinates...Ch. 2.1 - In Exercises 6-9, find the unspecified coordinates...Ch. 2.1 - Prob. 9ECh. 2.1 - Prob. 10E
Ch. 2.1 - Prob. 11ECh. 2.1 - In Exercises 1114, express the geometric vector...Ch. 2.1 - In Exercises 1114, express the geometric vector...Ch. 2.1 - Prob. 14ECh. 2.1 - In Exercises 15-16, find B=(b1,b2) such that v=AB....Ch. 2.1 - Prob. 16ECh. 2.1 - Prob. 17ECh. 2.1 - Prob. 18ECh. 2.1 - Let u=[13] and v=[22], and let A denote the point...Ch. 2.1 - Prob. 20ECh. 2.1 - Let u=ABandv=CD, where...Ch. 2.1 - Prob. 22ECh. 2.1 - Let u=[13] and v=[22], and let A denote the point...Ch. 2.1 - Let u=AB and v=CD, where A=(1,2), B=(3,5),...Ch. 2.1 - Let v=[32], and let A=(0,5). aFind points B and C...Ch. 2.1 - Let v=2i+6j and let A=(2,1). aFind points B and C...Ch. 2.1 - Prob. 27ECh. 2.1 - In Exercises 28-31, find a unit vector u that has...Ch. 2.1 - In Exercises 28-31, find a unit vector u that has...Ch. 2.1 - In Exercises 28-31, find a unit vector u that has...Ch. 2.1 - Prob. 31ECh. 2.1 - In Exercises 32-35, determine the terminal point B...Ch. 2.1 - In Exercises 32-35, determine the terminal point B...Ch. 2.1 - In Exercises 32-35, determine the terminal point B...Ch. 2.1 - In Exercises 32-35, determine the terminal point B...Ch. 2.1 - In Exercises 36-39, find the components of u+v and...Ch. 2.1 - Prob. 37ECh. 2.1 - Prob. 38ECh. 2.1 - Prob. 39ECh. 2.1 - Let u=[ab] where at least one of a or b is...Ch. 2.2 - In Exercises 1-4, plot the points P and Q and...Ch. 2.2 - Prob. 2ECh. 2.2 - Prob. 3ECh. 2.2 - Prob. 4ECh. 2.2 - In Exercise 5-6, find the coordinates of the...Ch. 2.2 - Prob. 6ECh. 2.2 - Prob. 7ECh. 2.2 - In Exercises 8-12, identify the given set of...Ch. 2.2 - In Exercises 8-12, identify the given set of...Ch. 2.2 - In Exercises 8-12, identify the given set of...Ch. 2.2 - In Exercises 8-12, identify the given set of...Ch. 2.2 - In Exercises 8-12, identify the given set of...Ch. 2.2 - In Exercises 13-16, graph the given region R....Ch. 2.2 - Prob. 14ECh. 2.2 - Prob. 15ECh. 2.2 - Prob. 16ECh. 2.2 - Prob. 17ECh. 2.2 - In the Exercises 18-21, a give the algebraic...Ch. 2.2 - Prob. 19ECh. 2.2 - Prob. 20ECh. 2.2 - Prob. 21ECh. 2.2 - Prob. 22ECh. 2.2 - Prob. 23ECh. 2.2 - Prob. 24ECh. 2.2 - Prob. 25ECh. 2.2 - Prob. 26ECh. 2.2 - In Exercises 26-29, find: a u+2v; b uv; c a vector...Ch. 2.2 - In Exercises 26-29, find: a u+2v; b uv; c a vector...Ch. 2.2 - In Exercises 26-29, find: a u+2v; b uv; c a vector...Ch. 2.2 - Prob. 30ECh. 2.2 - Prob. 31ECh. 2.2 - Prob. 32ECh. 2.2 - In Exercises 30-35, determine a vector u that...Ch. 2.2 - In Exercises 30-35, determine a vector u that...Ch. 2.2 - In Exercises 30-35, determine a vector u that...Ch. 2.3 - In Exercises 1-4, calculate the dot product uv,...Ch. 2.3 - In Exercises 1-4, calculate the dot product uv,...Ch. 2.3 - In Exercises 1-4, calculate the dot product uv,...Ch. 2.3 - Prob. 4ECh. 2.3 - In Exercises 5-8, determine cos where is the...Ch. 2.3 - In Exercises 5-8, determine cos where is the...Ch. 2.3 - In Exercises 5-8, determine cos where is the...Ch. 2.3 - In Exercises 5-8, determine cos where is the...Ch. 2.3 - In Exercises 9-12, find in radians where is the...Ch. 2.3 - In Exercises 9-12, find in radians where is the...Ch. 2.3 - Prob. 11ECh. 2.3 - In Exercises 9-12, find in radians where is the...Ch. 2.3 - In Exercises 13-18, there are at most...Ch. 2.3 - In Exercises 13-18, there are at most...Ch. 2.3 - In Exercises 13-18, there are at most...Ch. 2.3 - In Exercises 13-18, there are at most...Ch. 2.3 - In Exercises 13-18, there are at most...Ch. 2.3 - Prob. 18ECh. 2.3 - In exercises 19-22, u=OP,v=OQ and w=projqu. Find...Ch. 2.3 - In exercises 19-22, u=OP,v=OQ and w=projqu. Find...Ch. 2.3 - In exercises 19-22, u=OP,v=OQ and w=projqu. Find...Ch. 2.3 - In exercises 19-22, u=OP,v=OQ and w=projqu. Find...Ch. 2.3 - Prob. 23ECh. 2.3 - Prob. 24ECh. 2.3 - In Exercises 23-26, find u1 and u2 such that...Ch. 2.3 - In Exercises 23-26, find u1 and u2 such that...Ch. 2.3 - Prob. 27ECh. 2.3 - Prob. 28ECh. 2.3 - Prob. 29ECh. 2.3 - Prob. 30ECh. 2.3 - Prob. 31ECh. 2.3 - Prob. 32ECh. 2.3 - Prob. 33ECh. 2.3 - In the Exercises 32-35, calculate the cross...Ch. 2.3 - Prob. 35ECh. 2.3 - In the Exercises 36-39, find the vector w such...Ch. 2.3 - In the Exercises 36-39, find the vector w such...Ch. 2.3 - Prob. 38ECh. 2.3 - Prob. 39ECh. 2.3 - In Exercises 40-41, find a vector w that is...Ch. 2.3 - In Exercises 40-41, find a vector w that is...Ch. 2.3 - In Exercises 42-43, two sides of a parallelogram...Ch. 2.3 - In Exercises 42-43, two sides of a parallelogram...Ch. 2.3 - In Exercises 44-45, find the area of the triangle...Ch. 2.3 - In Exercises 44-45, find the area of the triangle...Ch. 2.3 - In Exercises 46-47, three edges of a...Ch. 2.3 - In Exercises 46-47, three edges of a...Ch. 2.3 - In Exercises 48-49, determine if the three vectors...Ch. 2.3 - In Exercises 48-49, determine if the three vectors...Ch. 2.3 - Verify that x=u2v3u3v2,y=u3v1u1v3,z=u1v2u2v1, is...Ch. 2.3 - Prob. 51ECh. 2.3 - Prob. 52ECh. 2.3 - Prob. 53ECh. 2.4 - In Exercises 1-2, give parametric equations for...Ch. 2.4 - In Exercises 1-2, give parametric equations for...Ch. 2.4 - In Exercises 3-4, give parametric equations for...Ch. 2.4 - In Exercises 3-4, give parametric equations for...Ch. 2.4 - Prob. 5ECh. 2.4 - In Exercises 5-8, determine whether the given...Ch. 2.4 - Prob. 7ECh. 2.4 - In Exercises 5-8 determine whether the given lines...Ch. 2.4 - In Exercises 9-10, find parametric equations for...Ch. 2.4 - In Exercises 910, find parametric equations for...Ch. 2.4 - In Exercises 1114, find a point P where the line...Ch. 2.4 - Prob. 12ECh. 2.4 - Prob. 13ECh. 2.4 - Prob. 14ECh. 2.4 - Prob. 15ECh. 2.4 - In Exercises 1516, find the equation of the plane...Ch. 2.4 - Prob. 17ECh. 2.4 - P=(5,1,7) Q=(6,9,2) R=(7,2,9) In Exercises 1720,...Ch. 2.4 - Prob. 19ECh. 2.4 - Prob. 20ECh. 2.4 - Prob. 21ECh. 2.4 - In Exercises 21-22, find a unit normal for the...Ch. 2.4 - Prob. 23ECh. 2.4 - In Exercises 23-24, find the equation of the plane...Ch. 2.4 - Prob. 25ECh. 2.4 - In Exercises 25-26, the given planes intersect in...Ch. 2.SE - Let u=[52],v=[71],x=[14] Write x in terms of...Ch. 2.SE - Prob. 2SECh. 2.SE - Let P=(16,20) and Q=(12,8), find Coordinates of...Ch. 2.SE - Prob. 4SECh. 2.SE - Prob. 5SECh. 2.SE - Prob. 6SECh. 2.SE - Prob. 7SECh. 2.SE - Prob. 8SECh. 2.SE - Prob. 9SECh. 2.SE - Prob. 10SECh. 2.SE - Prob. 11SECh. 2.SE - Prob. 12SECh. 2.SE - LetA, B, C,andDbe vertices, not endpoints of a...Ch. 2.CE - True or False : if uv=0, then either u=0orv=0.Ch. 2.CE - Prob. 2CECh. 2.CE - Prove the Parallelogram Law :...Ch. 2.CE - Let u and v be nonzero vectors in the plane....Ch. 2.CE - Prob. 5CECh. 2.CE - Prob. 6CECh. 2.CE - Prob. 7CECh. 2.CE - Prob. 8CECh. 2.CE - Prob. 9CECh. 2.CE - Prob. 10CECh. 2.CE - Prob. 11CECh. 2.CE - Prob. 12CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 3 and = 5 3 ---8--8--8 Let = 3 U2 = 1 Select all of the vectors that are in the span of {u₁, u2, u3}. (Check every statement that is correct.) 3 ☐ A. The vector 3 is in the span. -1 3 ☐ B. The vector -5 75°1 is in the span. ГОЛ ☐ C. The vector 0 is in the span. 3 -4 is in the span. OD. The vector 0 3 ☐ E. All vectors in R³ are in the span. 3 F. The vector 9 -4 5 3 is in the span. 0 ☐ G. We cannot tell which vectors are i the span.arrow_forward(20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forwardFind the perimeter and areaarrow_forward
- Assume {u1, U2, us} spans R³. Select the best statement. A. {U1, U2, us, u4} spans R³ unless u is the zero vector. B. {U1, U2, us, u4} always spans R³. C. {U1, U2, us, u4} spans R³ unless u is a scalar multiple of another vector in the set. D. We do not have sufficient information to determine if {u₁, u2, 43, 114} spans R³. OE. {U1, U2, 3, 4} never spans R³. F. none of the abovearrow_forwardAssume {u1, U2, 13, 14} spans R³. Select the best statement. A. {U1, U2, u3} never spans R³ since it is a proper subset of a spanning set. B. {U1, U2, u3} spans R³ unless one of the vectors is the zero vector. C. {u1, U2, us} spans R³ unless one of the vectors is a scalar multiple of another vector in the set. D. {U1, U2, us} always spans R³. E. {U1, U2, u3} may, but does not have to, span R³. F. none of the abovearrow_forwardLet H = span {u, v}. For each of the following sets of vectors determine whether H is a line or a plane. Select an Answer u = 3 1. -10 8-8 -2 ,v= 5 Select an Answer -2 u = 3 4 2. + 9 ,v= 6arrow_forward
- 3. Let M = (a) - (b) 2 −1 1 -1 2 7 4 -22 Find a basis for Col(M). Find a basis for Null(M).arrow_forwardSchoology X 1. IXL-Write a system of X Project Check #5 | Schx Thomas Edison essay, x Untitled presentation ixl.com/math/algebra-1/write-a-system-of-equations-given-a-graph d.net bookmarks Play Gimkit! - Enter... Imported Imported (1) Thomas Edison Inv... ◄›) What system of equations does the graph show? -8 -6 -4 -2 y 8 LO 6 4 2 -2 -4 -6 -8. 2 4 6 8 Write the equations in slope-intercept form. Simplify any fractions. y = y = = 00 S olo 20arrow_forwardEXERCICE 2: 6.5 points Le plan complexe est rapporté à un repère orthonormé (O, u, v ).Soit [0,[. 1/a. Résoudre dans l'équation (E₁): z2-2z+2 = 0. Ecrire les solutions sous forme exponentielle. I b. En déduire les solutions de l'équation (E2): z6-2 z³ + 2 = 0. 1-2 2/ Résoudre dans C l'équation (E): z² - 2z+1+e2i0 = 0. Ecrire les solutions sous forme exponentielle. 3/ On considère les points A, B et C d'affixes respectives: ZA = 1 + ie 10, zB = 1-ie 10 et zc = 2. a. Déterminer l'ensemble EA décrit par le point A lorsque e varie sur [0, 1. b. Calculer l'affixe du milieu K du segment [AB]. C. Déduire l'ensemble EB décrit par le point B lorsque varie sur [0,¹ [. d. Montrer que OACB est un parallelogramme. e. Donner une mesure de l'angle orienté (OA, OB) puis déterminer pour que OACB soit un carré.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Basic Differentiation Rules For Derivatives; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=IvLpN1G1Ncg;License: Standard YouTube License, CC-BY