College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 12P
Consider a concave mirror that has a focal length f. In terms of f, determine the object distances that will produce a magnification of (a) −1, (b) −2, and (c) −3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How far from a concave mirror (radius 25.0 cm ) must an object be placed if its image is to be at infinity?
Express your answer to three significant figures and include the appropriate units.
A concave mirror has a focal length of 40.6 cm. The distance between an object and its image is 74.8 cm. Find (a) the object and (b) image distances, assuming that the object lies beyond the center of curvature and (c) the object and (d) image distances, assuming that the object lies between the focal point and the mirror.
Your height as you dress in front of a spherical mirror in the morning for your 7:30 class is h. The absolute value of the focal length of the spherical mirror is20.3 cm. If your image has the same upright orientation with its height h’=0.1779h, then calculate how far (in cm) you are standing from the mirror.
Chapter 24 Solutions
College Physics (10th Edition)
Ch. 24 - If a spherical mirror is immersed in water, does...Ch. 24 - For what range of object positions does a concave...Ch. 24 - If a screen is placed at the location of a real...Ch. 24 - Is it possible to view a virtual image directly...Ch. 24 - Prob. 5CQCh. 24 - On a sunny day, you can use the suns rays and a...Ch. 24 - A person looks at her reflection in the concave...Ch. 24 - What happens to the image produced by a converging...Ch. 24 - Without measuring its radius of curvature (which...Ch. 24 - Without measuring its radii of curvature (which is...
Ch. 24 - A spherical air bubble in water can function as a...Ch. 24 - Optical telescopes having a principal mirror only...Ch. 24 - A ray from an object passes through a thin lens,...Ch. 24 - If a single lens forms a real image, we can...Ch. 24 - If a single lens forms a virtual image, we can...Ch. 24 - An object lies outside the focal port of a...Ch. 24 - An object lies outside the focal point of a...Ch. 24 - Prob. 6MCPCh. 24 - An object is placed a distance 2f away from a...Ch. 24 - In order to form an image with a converging lens...Ch. 24 - A ray from an object passes through a thin lens,...Ch. 24 - As you move an object from just outside to just...Ch. 24 - As you move an object from just outside to just...Ch. 24 - You have a shiny salad bowl with a spherical shape...Ch. 24 - A candle 4.85 cm tall is 39.2 cm to the left of a...Ch. 24 - Two plane mirrors form a 60 wedge as shown in...Ch. 24 - An object is placed between two plane mirrors...Ch. 24 - If you run away from a plane mirror at 2.40 m/s,...Ch. 24 - A concave spherical mirror has a radius of...Ch. 24 - A concave spherical mirror has a radius of...Ch. 24 - The diameter of Mars is 6794 km. and its minimum...Ch. 24 - A concave mirror has a radius of curvature of 34.0...Ch. 24 - Rearview mirror. A mirror on the passenger side of...Ch. 24 - Examining your image in a convex mirror whose...Ch. 24 - A coin is placed next to the convex side of a thin...Ch. 24 - Consider a concave mirror that has a focal length...Ch. 24 - A spherical, concave shaving mirror has a radius...Ch. 24 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 24 - Repeat the previous problem for the case in which...Ch. 24 - The thin glass shell shown in Figure 24.43 has a...Ch. 24 - Dental mirror. A dentist uses a curved mirror to...Ch. 24 - The left end of a long glass rod 6.00 cm in...Ch. 24 - Prob. 19PCh. 24 - The left end of a long glass rod 8.00 cm in...Ch. 24 - A large aquarium has portholes of thin transparent...Ch. 24 - Focus of the eye. The cornea of the eye has a...Ch. 24 - A speck of dirt is embedded 3.50 cm below the...Ch. 24 - A skin diver is 2.0 m below the surface of a lake....Ch. 24 - A person is swimming 1.0 m beneath the surface of...Ch. 24 - A converging lens with a focal length of 7.00 cm...Ch. 24 - A converging lens with a focal length of 90.0 cm...Ch. 24 - You are standing 0.50 m in front of a lens that...Ch. 24 - Figure 24.44 shows an object and its image formed...Ch. 24 - Set up: 1s+1s=1f. The type of lens determines the...Ch. 24 - Figure 24.46 shows an object and its image formed...Ch. 24 - The two surfaces of a plastic converging lens have...Ch. 24 - A lens has an index of refraction of 1.7 and a...Ch. 24 - Set Up: Use 1f=(n1)(1R11R2) to calculate f and...Ch. 24 - The lens of the eye. The crystalline lens of the...Ch. 24 - The cornea as a simple lens. The cornea behaves as...Ch. 24 - An insect 3.75 mm tall is placed 22.5 cm to the...Ch. 24 - Two double-convex thin lenses each have surfaces...Ch. 24 - A converging meniscus lens (see Figure 24.30) with...Ch. 24 - A converging lens with a focal length of 12.0 cm...Ch. 24 - Combination of lenses, I. When two lenses are used...Ch. 24 - Set Up: Apply 1s+1s=1f with f = 35.0 cm. We know...Ch. 24 - Combination of lenses, II. Two thin lenses with a...Ch. 24 - A lens forms a real image that is 214 cm away from...Ch. 24 - A converging lens has a focal length of 14.0 cm...Ch. 24 - A converging lens forms an image of an...Ch. 24 - A diverging lens with a focal length of 48.0 cm...Ch. 24 - When an object is 16.0 cm from a lens, an image is...Ch. 24 - Figure 24.48 shows a small plant near a thin lens....Ch. 24 - Figure 24.49 shows a small plant near a thin lens....Ch. 24 - Figure 24.50 shows a small plant near a thin lens....Ch. 24 - Prob. 52GPCh. 24 - Where must you place an object in front of a...Ch. 24 - Set Up: Use 1s+1s=1f. A plot of 1f versus 1s...Ch. 24 - A concave mirror is to form an image of the...Ch. 24 - A lens has one convex surface of radius 6.00 cm...Ch. 24 - A 3 80-nm-tall object 24.0 cm from the center of...Ch. 24 - A lensmaker wants to make a magnifying glass from...Ch. 24 - An object is placed 18.0 cm from a screen, (a) At...Ch. 24 - In the text, Equations 24.4 and 24.7 were derived...Ch. 24 - A lens in a liquid. A lens obeys Snell s law,...Ch. 24 - Refraction of liquids. The focal length of a...Ch. 24 - Refraction of liquids. The focal length of a...Ch. 24 - If you place a concave mirror with a focal length...Ch. 24 - Refraction of liquids. The focal length of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. The major evidence for the idea that t...
Cosmic Perspective Fundamentals
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
In the light reactions, what is the initial electron donor? Where do the electrons finally end up?
Campbell Biology (11th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardIn Figure P35.30, a thin converging lens of focal length 14.0 cm forms an image of the square abed, which is he = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c. and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb, represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P35.30arrow_forwardA convex mirror with a radius of curvature of 25.0 cm is used to form an image of an arrow that is 10.0 cm away from the mirror. If the arrow is 2.00 cm tall and inverted (pointing below the optical axis), what is the height of the arrows image?arrow_forward
- A converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardAn object of height 3 cm is placed at a distance of 25 cm in front of a converging lens of focal length 20 cm, to be referred to as the first lens. Behind the lens there is another converging lens of focal length 20 cm placed 10 cm from the first lens. There is a concave mirror of focal length 15 cm placed 50 cm from the second lens. Find the location, orientation, and size of the final image.arrow_forwardA 1.80-m-tall person stands 9.00 m in front of a large, concave spherical mirror having a radius of curvature of 3.00 m. Determine (a) the mirrors focal length, (b) the image distance, and (c) the magnification. (d) Is the image real or virtual? (e) Is the image upright or inverted?arrow_forward
- An object of height 3 cm is placed at 25 cm in front of a converging lens of focal length 20 cm. Behind the lens there is a concave mirror of focal length 20 cm. The distance between the lens and the mirror is 5 cm. Find the location, orientation and size of the final image.arrow_forwardUnder what circumstances will an image be located at the focal point of a spherical lens or mirror?arrow_forward(i) When an image of an object is formed by a plane mirror, which of the following statements is always true? More than one statement may be correct. (a) The image is virtual. (b) The image is real. (c) The image is upright. (d) The image is inverted. (e) None of those statements is always true. (ii) When the image of an object is formed by a concave mirror, which of the preceding statements are always true? (iii) When the image of an object is formed by a convex mirror, which of the preceding statements are always true?arrow_forward
- The disk of the Sun subtends an angle of 0.533 at the Earth. What are (a) the position and (b) the diameter of the solar image formed by a concave spherical mirror with a radius of curvature of magnitude 3.00 m?arrow_forwardAn object of height 2 cm is placed at 50 cm in front of a diverging lens of focal length 40 cm. Behind the lens, there is a convex mirror of focal length 15 cm placed 30 cm from the converging lens. Find the location, orientation, and size of the final image.arrow_forwardUse a ruler and a protractor to draw rays to find images in the following cases. (a) A point object located on the axis of a concave minor located at a point within the focal length from the vertex. (b) A point object located on the axis of a concave mirror located at a point farther than the focal length from the vertex. (c) A point object located on the axis of a convex mirror located at a point within the focal length from the vertex. (d) A point object located on the axis of a convex mirror located at a point farther than the focal length from the vertex. (e) Repeat (a)—(d) for a point object off the axis.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY