College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 23, Problem 10PE
Integrated Concepts
Referring to the situation in the previous problem: (a) What current is induced in the ring if its resistance is 0.0100 Ω? (b) What average power is dissipated? (c) What magnetic field is induced at the center of the ring? (d) What is the direction of the induced magnetic field relative to the MRI'S field?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 23 Solutions
College Physics
Ch. 23 - How do the multiple-loop coils and iron ring in...Ch. 23 - When a magnet is thrust into a coil as in Figure...Ch. 23 - Explain how magnetic flux can be zero when the...Ch. 23 - Is an emf induced in the coil in Figure 23.54 when...Ch. 23 - A person who works with large magnets sometimes...Ch. 23 - A particle accelerator sends highvelocity charged...Ch. 23 - Why must pan of the circuit be moving relative to...Ch. 23 - A powerful induction cannon can be made by placing...Ch. 23 - An induction slave heats a pot with a coil...Ch. 23 - Explain how you could thaw out a frozen water pipe...
Ch. 23 - Explain why magnetic damping might not be...Ch. 23 - Explain how electromagnetic induction can be used...Ch. 23 - Using RHR-l, show that the emfs in the sides of...Ch. 23 - The source of a generator’s electrical energy...Ch. 23 - Suppose you find that the belt drive connecting a...Ch. 23 - Explain what causes physical vibrations in...Ch. 23 - Does plastic insulation on live/hot wires prevent...Ch. 23 - Why are ordinary circuit breakers and fuses...Ch. 23 - A GFI may trip just because the live/hot and...Ch. 23 - How would you place two identical flat coils in...Ch. 23 - How would you shape a given length of wire to give...Ch. 23 - €22. Verify, as was concluded without proof in...Ch. 23 - Presbycusis is a hearing loss due to age that...Ch. 23 - Would you use a large inductance or a large...Ch. 23 - High-frequency noise in AC power can damage...Ch. 23 - Does inductance depend on current, frequency, or...Ch. 23 - Explain why the capacitor in Figure 23.55(a) acts...Ch. 23 - If the capacitors in Figure 23.55 are replaced by...Ch. 23 - Does the resonant frequency of an AC circuit...Ch. 23 - Suppose you have a motor with a power factor...Ch. 23 - What is the value of the magnetic flux at coil 2...Ch. 23 - What is the value of the magnetic flux through the...Ch. 23 - Referring to Figure 23.5?(a), what is the...Ch. 23 - Referring to Figure 23.57(b), what is the...Ch. 23 - Referring to Figure 23.58, what are the directions...Ch. 23 - Repeat the previous problem with the battery...Ch. 23 - Verify that the units /t are volts. That is, show...Ch. 23 - Suppose a 50-turn coil lies in the plane of the...Ch. 23 - (a) An MRI technician moves his hand from a region...Ch. 23 - Integrated Concepts Referring to the situation in...Ch. 23 - An emf is induced by rotating a 1000-turn, 20.0 cm...Ch. 23 - A 0.250 m radius, 500-turn coil is rotated...Ch. 23 - Integrated Concepts Approximately how does the emf...Ch. 23 - Integrated Concepts A lightning bolt produces a...Ch. 23 - Use Faraday’s law, Lenz’s law, and RHR—l to show...Ch. 23 - If a current flows in the Satellite Tether shown...Ch. 23 - (a) A jet airplane with a 75.0 m wingspan is...Ch. 23 - (a) A nonferrous screwdriver is being used in a...Ch. 23 - At what speed must the sliding rod in Figure 23.11...Ch. 23 - The 12.0 cm long rod in Figure 23.11 moves at 4.00...Ch. 23 - Prove that when B, l, and v are not mutually...Ch. 23 - In the August 1992 space shuttle flight, only 250...Ch. 23 - Integrated Concepts Derive an expression for the...Ch. 23 - Integrated Concepts The Tethered Satellite in...Ch. 23 - Integrated Concepts The Tethered Satellite...Ch. 23 - Make a drawing similar to Figure 23.14, but with...Ch. 23 - Figure 23.59 A coil is moved into and out of a...Ch. 23 - Calculate the peak voltage of a generator that...Ch. 23 - At what angular velocity in rpm will the peak...Ch. 23 - What is the peak emf generated by rotating a...Ch. 23 - What is the peak emf generated by a 0.250 m...Ch. 23 - (a) A bicycle generator rotates at 1875 rad/s,...Ch. 23 - Integrated Concepts This problem refers to the...Ch. 23 - (a) A car generator turns at 400 rpm when 1he...Ch. 23 - Show that if a coil rotates at an angular velocity...Ch. 23 - A 75-turn, 10.0 cm diameter coil rotates at an...Ch. 23 - (a) If the emf of a coil rotating in a magnetic...Ch. 23 - Unreasonable Results A 500-turn coil with a 0.250...Ch. 23 - Suppose a motor connected to a 120 V source draws...Ch. 23 - A motor operating on 240 V electricity has a 180 V...Ch. 23 - What is the back emf of a 120 V motor that draws...Ch. 23 - The motor in a toy car operates on 6.00 V....Ch. 23 - Integrated Concepts The motor in a toy car is...Ch. 23 - A plug—in transformer, like that in Figure 23.29,...Ch. 23 - An American traveler in New Zealand carries a...Ch. 23 - A cassette recorder uses a plug-in transformer to...Ch. 23 - (a) What is the voltage output of a transformer...Ch. 23 - (a) The plug-in transformer for a laptop computer...Ch. 23 - A multipurpose transformer has a secondary coil...Ch. 23 - A large power plant generates electricity at 12.0...Ch. 23 - If the power output in the previous problem is...Ch. 23 - Unreasonable Results The 335 kV AC electricity...Ch. 23 - Construct Your Own Problem Consider a double...Ch. 23 - Integrated Concepts A short circuit to the...Ch. 23 - Two coils are placed close together in a physics...Ch. 23 - If two coils placed next to one another have a...Ch. 23 - The 4.00 A current through a 7.50 mH inductor is...Ch. 23 - A device is turned on and 3.00 A flows through it...Ch. 23 - Starting with emf2=MI1t, show that the units of...Ch. 23 - Camera flashes charge a capacitor to high voltage...Ch. 23 - A large research solenoid has a self-inductance of...Ch. 23 - (a) Calculate the self-inductance of a 50.0 cm...Ch. 23 - A precision laboratory resistor is made of a coil...Ch. 23 - The healing coils in a hair dryer are 0.800 cm in...Ch. 23 - When the 20.0 A current through an inductor is...Ch. 23 - How fast can the 150 A current through a 0.250 H...Ch. 23 - Integrated Concepts A very large, superconducting...Ch. 23 - Unreasonable Results A 25.0 H inductor has 100 A...Ch. 23 - It you want a characteristic RL time constant of...Ch. 23 - Your RL circuit has a characteristic time constant...Ch. 23 - A large superconducting magnet, used for magnetic...Ch. 23 - Verify that alter a time of 10.0 ms, the current...Ch. 23 - Suppose you have a supply of inductors ranging...Ch. 23 - (a) What is the characteristic time constant of a...Ch. 23 - What percentage of the final current I0 flows...Ch. 23 - The 5.00 A current through a 1.50 H inductor is...Ch. 23 - (a) Use the exact exponential treatment to find...Ch. 23 - (a) Using the exact exponential treatment, find...Ch. 23 - At what frequency will a 30.0 mH inductor have a...Ch. 23 - What value of inductance should be used if a 20.0...Ch. 23 - What capacitance should be used to produce a 2.00...Ch. 23 - At what frequency will an 80.0 mF capacitor have a...Ch. 23 - (a) Find me current through a 0.500 H inductor...Ch. 23 - (a) What current flows when a 60.0 Hz, 480 V AC...Ch. 23 - A 20.0 kHz, 16.0 V source connected to an inductor...Ch. 23 - A 20.0 HZ, 16.0 V source produces a 2.00 mA...Ch. 23 - (a) An inductor designed to filter high-frequency...Ch. 23 - The capacitor in Figure 23.55(a) is designed to...Ch. 23 - The capacitor in Figure 23.55(b) will filler...Ch. 23 - Unreasonable Results In a recording of voltages...Ch. 23 - Construct Your Own Problem Consider the use of an...Ch. 23 - An RL circuit consists of a 40.0 (resistor and a...Ch. 23 - An RC circuit consists of a 40.0 (resistor and a...Ch. 23 - An LC circuit consists of a 3.00 mH inductor and a...Ch. 23 - What is the resonant frequency of a 0.500 mH...Ch. 23 - To receive AM radio, you want an RLC circuit that...Ch. 23 - Suppose you have a supply of inductors ranging...Ch. 23 - What capacitance do you need to produce a resonant...Ch. 23 - What inductance do you need to produce a resonant...Ch. 23 - The lowest frequency in the FM radio band is 88.0...Ch. 23 - An RLC series circuit has a 2.50 (resistor, a 100...Ch. 23 - An RLC series circuit hag a 1.00 k(register, a 150...Ch. 23 - An RLC series circuit has a 2.50 (resistor, a 100...Ch. 23 - An RLC series circuit has a 1.00 k(resistor, a...Ch. 23 - An RLC series circuit has a 200 (resistor and a...Ch. 23 - Referring to Example 23.14, find the average power...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Identify me theme or themes exemplified by (a) the sharp quills of a porcupine (b) the development of a multice...
Campbell Biology in Focus (2nd Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
7. Both Tim and Jan (problem 6) have a widow’s peak (see Module 9.8), but Mike has a straight hairline. What ar...
Campbell Biology: Concepts & Connections (9th Edition)
With two pairs of genes involved (P/p and Z/z), a testcross (ppzz) with an organism of unknown genotype indicat...
Concepts of Genetics (12th Edition)
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Is the work required to accelerate a rod from rest to a speed v in a magnetic field greater than the final kinetic energy of the rod? Why?arrow_forwardSuppose the parallel-plate capacitor shown below is accumulating charge at a rate of 0.010 C’s. What is the induced magnetic field at a distance of 10 cm from the capacitator?arrow_forwardA parallel-plate capacitor with plate separation d is connected to a source of emf that places a time-dependent voltage V(t) across its circular plates of radius r0and area (a) Write an expression for the time rate of change of energy inside the capacitor in terms of V(t) and dV(t)/ dt. (b) Assuming that V(t) is increasing with time, identify the directions of the elecuic field lines inside the capacitor and of the magnetic field lines at the edge of the region between the plates, and then the direction of the Poynting vector S at this location. (c) Obtain expressions for the time dependence of E(t), for B(t) from the displacement current, and for the magnitude of the Poynting vector at the edge of the region between the plates. (d) From S , obtain an expression In terms of ‘(t) and dV(t)/dt for the rate at which electromagnetic field energy the region between the plates. (e) Compare the results of pails (a) and (d) and explain the relationship between them.arrow_forward
- Check Your Understanding Shown below is a rod of length l that is rotated counterclockwise around the axis through O by the torque due to mg . Assuming that the rod is in a uniform magnetic field B , what is the emf induced between the ends of the rod when its angular velocity is ? Which end of the rod is at a higher potential?arrow_forwardA current is induced in a circular loop of radius 1.5 cm between two poles of a horseshoe electromagnet when the current in the electromagnet is varied. The magnetic Field in the area of the loop is perpendicular to the area and has a uniform magnitude. If the rate of change of magnetic field is 10 T/s, find the magnitude and direction of the induced current if resistance of the loop is 25 .arrow_forwardCheck Your Understanding Repeat the previous problem with the magnetic field in the x-direction rather than in the z-direction. Check your answers with RHR-1.arrow_forward
- How is the percentage change in the strength of the magnetic field across the face of the toroid related to the percentage change in the radial distance from the axis of the toroid?arrow_forwardShow that the magnetic field at a distance r from the axis of two circular parallel plates, produced by placing charge Q(t) on the plates is Bind=02rdQ(t)dtarrow_forwardA conducting sheet lies in a plane perpendicular to a magnetic field B that is below the sheet. If B oscillates at a high frequency and the conductor is made of a material of low resistivity, the region above the sheet is effectively shielded from B . Explain why. Will the conductor shield this region from static magnetic fields?arrow_forward
- 12.7 Check Your Understanding What is the ratio of the magnetic field produced from using a finite formula over the infinite approximation for an angle of (a) 85°? (b) 89°? The solenoid has 1000 mins in 50 cm with a current of 1.0 A flowing through the coilsarrow_forwardA thin conducting bar (60.0 cm long) aligned in the positive y direction is moving with velocity v=(1.25m/s)i in a region with a spatially uniform 0.400-T magnetic field directed at an angle of 36.0 above the xy plane. a. What is the magnitude of the emf induced along the length of the moving bar? b. Which end of the bar is positively charged?arrow_forwardUnreasonable results To construct a non-mechanical water meter, a 0.500-T magnetic field is placed across the supply water pipe to a home and the Hall voltage is recorded, (a) Find the flow rate through a 3.00-cm-diameter pipe if the Hall voltage is 60.0 mV. (b) What would the Hail voltage be for the same flow rate through a 10,0-cm- diameter pipe with tire same field applied?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY