Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 67P
A
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A conducting cylinder of radius 3.25 cm and length 5.6 cm has a total charge of 4.5x10-9 C distributed uniformly on its surface area. Find the potential at (a) its surface, and (b) 2.5 cm and (c) 5.0 cm from the center of the cylinder.
A uniform insulating sphere of radius a with charge Q1 = 0.8 nCis concentric with a = 11.0 cm conducting spherical shell ofinner radius b = 20.0 cm, outer radius c = 30.0 cm andcharge Q2 = 2.0 nC as shown in the figure.If the center of the sphere is chosen as the origin of thecoordinate system, find the potential differenceV (x = a/2 , y = 0 , z = 0) − V (x = 0 , y = (b + c)/2 , z = 0)in units of Volts.Take 14πε0= 9.0 × 109 Nm2/C2.
Consider an infinitely long conducting shell in the shape of a
right circular cylinder with radius R and uniform surface charge density
o = 500, where oo is a constant. Find the potential difference Vab where
points a and b are ra and ry = 6ra distance away from the longitudinal
%3D
axis of the cylinder with ra > R.
5σο R
1
1
(A)
In
€0
Ta
6ra
500R
In (1
€0
(B)
|
500R
In 6
€0
(C)
500 · R2
In 6
2€0ra
(D)
500R
In 6
€0
(E)
Chapter 22 Solutions
Essential University Physics (3rd Edition)
Ch. 22.1 - What would happen to the potential difference Vab...Ch. 22.1 - (1) A proton (charge e), (2) an alpha particle...Ch. 22.1 - The figure shows three straight paths AB of the...Ch. 22.2 - You measure a potential difference of 50 V between...Ch. 22.2 - The figure shows three paths from infinity to a...Ch. 22.3 - The figure shows cross sections through two...Ch. 22 - Why can a bird perch on a high-voltage power line...Ch. 22 - One proton is accelerated from rest by a uniform...Ch. 22 - Would a free electron move toward higher or lower...Ch. 22 - The electric Field at the center of a uniformly...
Ch. 22 - Must the potential be zero at any point where the...Ch. 22 - Must the electric field he zero at any point where...Ch. 22 - The potential is constant throughout an entire...Ch. 22 - In considering the potential of an infinite flat...Ch. 22 - Cherry picker trucks for working on power lines...Ch. 22 - Can equipotential surfaces intersect? Explain.Ch. 22 - Is the potential at the center of a hollow,...Ch. 22 - A solid sphere contains positive charge uniformly...Ch. 22 - Two equal hut opposite charges form a dipole....Ch. 22 - The electric potential in a region increases...Ch. 22 - How much work does it take to move a 50-C charge...Ch. 22 - The potential difference between the two sides of...Ch. 22 - It takes 45 J to move a 15-mC charge from point A...Ch. 22 - Show that 1 V/m is the same as 1 N/C.Ch. 22 - Find the magnitude of the potential difference...Ch. 22 - A charge of 3.1 C moves from the positive to the...Ch. 22 - A proton, an alpha particle (a bare helium...Ch. 22 - The potential difference across a typical cell...Ch. 22 - An electric field is given by E= E0, where E0 is a...Ch. 22 - The classical picture of the hydrogen atom has the...Ch. 22 - The potential at the surface of a 10-cm-radius...Ch. 22 - Youre developing a switch for high-voltage power...Ch. 22 - A 3.5-cm-diameter isolated metal sphere carries...Ch. 22 - In a uniform electric field, equipotential planes...Ch. 22 - Figure 22.22 shows a plot of potential versus...Ch. 22 - figure 22.23 shows some equipotentials in the x-y...Ch. 22 - The electric potential in a region is given by V =...Ch. 22 - Dielectric breakdown of air occurs at fields of 3...Ch. 22 - Youre an automotive engineer working on the...Ch. 22 - A large metal sphere has three times the diameter...Ch. 22 - Two points A and B lie 15 cm apart in a uniform...Ch. 22 - The electric field within a cell membrane is...Ch. 22 - Whats the potential difference between the...Ch. 22 - Whats the charge on an ion that gains 1.61015 J...Ch. 22 - Two Hat metal plates are a distance d apart, where...Ch. 22 - An electron passes point A moving at 6.5 Mm/s. At...Ch. 22 - A 5.0-g object carries 3.8 C. It acquires speed v...Ch. 22 - Points A and B lie 32.0 cm apart on a line...Ch. 22 - A sphere of radius R carries negative charge of...Ch. 22 - Proton-beam therapy can be preferable to X rays...Ch. 22 - A thin spherical shell has radius R and total...Ch. 22 - A solid sphere of radius R carries charge Q...Ch. 22 - Find the potential as a function of position in...Ch. 22 - Your radio station needs a new coaxial cable to...Ch. 22 - The potential difference between the surface of a...Ch. 22 - Three equal charges q form an equilateral triangle...Ch. 22 - A charge +Q lies at the origin and 3Q at x = a....Ch. 22 - Two identical charges q lie on the x-axis at a....Ch. 22 - A dipole of moment p = 2.9 nC m consists of two...Ch. 22 - A thin plastic rod 20 cm long carries 3.2 nC...Ch. 22 - A thin ring of radius R carries charge 3Q...Ch. 22 - The potential at the center of a uniformly charged...Ch. 22 - The annulus shown in Fig. 22.25 carries a uniform...Ch. 22 - The potential in a region is given by V = axy,...Ch. 22 - Use Equation 22.6 to calculate the electric field...Ch. 22 - Use the result of Example 22.6 to determine the...Ch. 22 - The electric potential in a region is given by V =...Ch. 22 - Two metal spheres each 1.0 cm in radius are far...Ch. 22 - Two 5.0-cm-diameter conducting spheres are 8.0 m...Ch. 22 - A 2.0-cm-radius metal sphere carries 75 nC and is...Ch. 22 - A sphere of radius R carries a nonuniform but...Ch. 22 - The potential as a function of position in a...Ch. 22 - A conducting sphere 5.0 cm in radius carries 60...Ch. 22 - INTERPRET Ibis problem deals with the electric...Ch. 22 - The potential on the axis of a uniformly charged...Ch. 22 - A uranium nucleus (mass 238 u, charge 92e) decays,...Ch. 22 - The Taser, an ostensibly nonlethal weapon used by...Ch. 22 - Using the dipole potential at points far from a...Ch. 22 - Measurements of the potential at points on the...Ch. 22 - Find an equation describing the V = 0...Ch. 22 - A thin rod of length L carries charge Q...Ch. 22 - For the rod of the preceding problem, (a) find an...Ch. 22 - A disk of radius a carries nonuniform surface...Ch. 22 - An open ended cylinder of radius a and length 2a...Ch. 22 - A line charge extends along the x-axis from L/2 to...Ch. 22 - Repeat Problem 79 for the charge distribution =...Ch. 22 - Youre sizing a new electric transmission line, and...Ch. 22 - bio Standard electrocardiography measures...Ch. 22 - bio Standard electrocardiography measures...Ch. 22 - bio Standard electrocardiography measures...Ch. 22 - bio Standard electrocardiography measures...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8.76 Automobile Accident Analysis. You are called as an expert witness to analyze the following auto accident:...
University Physics with Modern Physics (14th Edition)
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Explain all answers clearly, with complete sentences and proper essay structure, if needed. An asterisk (*) des...
Cosmic Perspective Fundamentals
What is the self-inductance of an LC circuit that oscillates at 60 Hz 1ien the capacitance is 10 F ?
University Physics Volume 2
(II) A 265-kg load is lifted 23.0m vertically with an acceleration a = 0.150 g by a single cable. Determine (a)...
Physics for Scientists and Engineers with Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many electrons should be removed from an initially uncharged spherical conductor of radius 0.300 m to produce a potential of 7.50 kV at the surface?arrow_forwardThe three charged particles in Figure P20.11 are at the vertices of an isosceles triangle (where d = 2.00 cm). Taking q = 7.00 C, calculate the electric potential at point A, the midpoint of the base. Figure P20.11arrow_forwardA CD disk of radius (R = 3.0 cm) is sprayed with a charged paint so that the charge varies continually with radial distance r from the center in the following manner =(6.0C/m)r/R ?. Find the potential at a point 4 cm above the center.arrow_forward
- At a certain distance from a charged particle, the magnitude of the electric field is 500 V/m and the electric potential is 3.00 kV. (a) What is the distance to the particle? (b) What is the magnitude of the charge?arrow_forwardFour particles are positioned on the rim of a circle. The charges on the particles are +0.500 C, +1.50 C, 1.00 C, and 0.500 C. If the electric potential at the center of the circle due to the +0.500 C charge alone is 4.50 104 V, what is the total electric potential at the center due to the four charges? (a) 18.0 104 V (b) 4.50 104 V (c) 0 (d) 4.50 104 V (e) 9.00 104 Varrow_forwardThe electric potential inside a charged spherical conductor of radius R is given by V = keQ/R, and the potential outside is given by V = keQ/R, Using Er = dV/dr, derive the electric field (a) inside and (b) outside this charge distribution.arrow_forward
- A filament running along the x axis from the origin to x = 80.0 cm carries electric charge with uniform density. At the point P with coordinates (x = 80.0 cm, y = 80.0 cm), this filament creates electric potential 100 V. Now we add another filament along the y axis, running from the origin to y = 80.0 cm. carrying the same amount of charge with the same uniform density. At the same point P, is the electric potential created by the pair of filaments (a) greater than 200 V, (b) 200 V, (c) 100 V, (d) between 0 and 200 V, or (e) 0?arrow_forwardAn electron moving parallel to the x axis has an initial speed of 3.70 106 m/s at the origin. Its speed is reduced to 1.40 105 m/s at the point x = 2.00 cm. (a) Calculate the electric potential difference between the origin and that point. (b) Which point is at the higher potential?arrow_forwardA filament running along the x axis from the origin to x = 80.0 cm carries electric charge with uniform density. At the point P with coordinates (x = 80.0 cm, y = 80.0 cm), this filament creates electric potential 100 V. Now we add another filament along the y axis, running from the origin to y = 80.0 cm, carrying the same amount of charge with the same uniform density. At the same point P, is the electric potential created by the pair of filaments (a) greater than 200 V, (b) 200 V, (c) 100 V, (d) between 0 and 200 V, or (e) 0?arrow_forward
- At a certain distance from a charged particle, the magnitude of the electric field is 500 V/m and the electric potential is 3.00 kV. (a) What is the distance to the particle? (b) What is the magnitude of the charge?arrow_forwardTwo very large metal plates are placed 2.0 cm apart, with a potential difference of 12 V between them. Consider one plate to be at 12 V, and the other at 0 V. (a) Sketch the equipotential surfaces for 0, 4, 8, and 12 V. (b) Next sketch in some electric field lines, and confirm that they are perpendicular to the equipotential lines.arrow_forwardA 5.00-nC charged particle is at point B in a uniform electric field with a magnitude of 625 N/C (Fig. P26.65). What is the change in electric potential experienced by the charge if it is moved from B to A along a. path 1 and b. path 2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY