College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 22, Problem 25MCQ
The potential difference across a length of wire is increased. Which of the following does not increase as well?
A The electric field in the wire
B. The power dissipated in the wire
C. The resistance of the wire
D. The current in the wire
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 22 - Prob. 2CQCh. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - All wires in Figure Q22.519 are made of the same...Ch. 22 - A wire carries a 4 A current. What is the current...Ch. 22 - Prob. 7CQCh. 22 - Cells in the nervous system have a potential...Ch. 22 - a. Which directionclockwise or...Ch. 22 - Prob. 10CQCh. 22 - Prob. 11CQ
Ch. 22 - The two circuits in Figure Q22.12 use identical...Ch. 22 - The two circuits in Figure Q22.13 use identical...Ch. 22 - Prob. 14CQCh. 22 - Rank in order, from largest to smallest, the...Ch. 22 - The circuit in Figure Q22.16 has three batteries...Ch. 22 - Prob. 17CQCh. 22 - Prob. 18CQCh. 22 - Over time, atoms boil off the hot filament in an...Ch. 22 - Prob. 20CQCh. 22 - A 100 W lightbulb is brighter than a 60 W...Ch. 22 - Lightbulbs are typically rated by their power...Ch. 22 - Lightbulbs are typically rated by their power...Ch. 22 - A copper wire is stretched so that its length...Ch. 22 - The potential difference across a length of wire...Ch. 22 - Prob. 26MCQCh. 22 - A resistor connected to a 3.0 V battery dissipates...Ch. 22 - If a 1.5 V battery stores 5.0 kJ of energy (a...Ch. 22 - Figure Q22.29 shows a side view of a wire of...Ch. 22 - A person gains weight by adding fatand therefore...Ch. 22 - Prob. 31MCQCh. 22 - The current in an electric hair dryer is 10 A. How...Ch. 22 - Prob. 2PCh. 22 - Three wires meet at a junction. Wire 1 has a...Ch. 22 - When a nerve cell depolarizes, charge is...Ch. 22 - A wire carries a 15 A current. How many electrons...Ch. 22 - In a typical lightning strike, 2.5 C flows from...Ch. 22 - Prob. 7PCh. 22 - In an ionic solution, 5.0 1015 positive ions with...Ch. 22 - Prob. 9PCh. 22 - What are the values of currents IB and IC in...Ch. 22 - The currents through several segments of a wire...Ch. 22 - How much electric potential energy does 1.0 C of...Ch. 22 - What is the emf of a battery that increases the...Ch. 22 - A 9.0 V battery supplies a 2.5 mA current to a...Ch. 22 - Prob. 16PCh. 22 - An electric catfish can generate a significant...Ch. 22 - A Wire with resistance R is connected to the...Ch. 22 - Wires 1 and 2 are made of the same metal. Wire 2...Ch. 22 - Prob. 20PCh. 22 - Resistivity measurements on the leaves of corn...Ch. 22 - Prob. 22PCh. 22 - A motorcyclist is making an electric vest that,...Ch. 22 - Prob. 24PCh. 22 - A 3.0 V potential difference is applied between...Ch. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Figure P22.29 shows the...Ch. 22 - Figure P22.30 is a...Ch. 22 - In Example 22.6 the length of a 60 W, 240 ...Ch. 22 - The electric field inside a 30-cm-long copper wire...Ch. 22 - A copper wire is 1.0 mm in diameter and carries a...Ch. 22 - Two identical lightbulbs are connected in series...Ch. 22 - Prob. 35PCh. 22 - a. What is the resistance of a 1500 W (120 V) hair...Ch. 22 - Prob. 37PCh. 22 - A 70 W electric blanket runs at 18 V. a. What is...Ch. 22 - A 60-cm-long heating wire is connected to a 120 V...Ch. 22 - An electric eel develops a potential difference of...Ch. 22 - Prob. 41PCh. 22 - A 3.0 V battery powers a flashlight bulb that has...Ch. 22 - A heating element in a toaster dissipates 900 W...Ch. 22 - Prob. 44GPCh. 22 - Prob. 45GPCh. 22 - The hot dog cooker described in the chapter heats...Ch. 22 - Air isnt a perfect electric insulator, but it has...Ch. 22 - The biochemistry that takes place inside cells...Ch. 22 - High-resolution measurements have shown that an...Ch. 22 - When an ion channel opens in a cell wall (see...Ch. 22 - The total charge a battery can supply is rated in...Ch. 22 - Prob. 52GPCh. 22 - The heating element of a simple heater consists of...Ch. 22 - Variations in the resistivity of blood can give...Ch. 22 - A 40 W (120 V) lightbulb has a tungsten filament...Ch. 22 - Prob. 56GPCh. 22 - When the starter motor on a car is engaged, there...Ch. 22 - Prob. 58GPCh. 22 - The two segments of the wire in Figure P22.59 have...Ch. 22 - Prob. 60GPCh. 22 - Prob. 61GPCh. 22 - Prob. 62GPCh. 22 - Prob. 63GPCh. 22 - Prob. 64GPCh. 22 - An immersion heater used to boil water for a...Ch. 22 - The graph in Figure P22.66 shows the current...Ch. 22 - Its possible to estimate the percentage of fat in...Ch. 22 - If you touch the two terminals of a power supply...Ch. 22 - The average resistivity of the human body (apart...Ch. 22 - MCAT-Style Passage Problems Lightbulb Failure...Ch. 22 - MCAT-Style Passage Problems Lightbulb Failure...Ch. 22 - MCAT-Style Passage Problems Lightbulb Failure...Ch. 22 - MCAT-Style Passage Problems Lightbulb Failure...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Date: September 15, 2045. Headline: Sun-Like Star Has Three Planets with Life.
Life in the Universe (4th Edition)
The figure shows the path of a light ray through three different media. Rank the media according to their refra...
Essential University Physics: Volume 2 (3rd Edition)
You wish to travel to a star N light years from Earth. How fast must you go if the one-way journey is to occupy...
Essential University Physics (3rd Edition)
Attach day to the bottom left side of the board so that it remains at rest when placed horizontally on the pivo...
Tutorials in Introductory Physics
Automotive standards call for bumpers that sustain essentially no damage in a 4-km/h collision with a stationar...
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Construct Your Own Problem Consider a person working in an environment where electric currents might pass through her body. Construct a problem in which you calculate the resistance of insulation needed to protect the person from harm. Among the things to be considered are the voltage to which the person might be exposed, likely body resistance (dry, wet, ...), and acceptable currents (safe but sensed, safe and unfelt, ...).arrow_forwardA 12-V car battery is used to power a 20.00-W, 12.00-V lamp during the physics club camping trip/star party. The cable to the lamp is 2.00 meters long, 14-gauge copper wire with a charge density of n=9.501028m3 . (a) What is the current draw by the lamp? (b) How long would it take an electron to get from the battery to the lamp?arrow_forwardThe- pair of capacitors in Figure P28.63 are fully charged by a 12.0-V battery. The battery is disconnected, and the switch is then closed. Alter 1.00 ms has elapsed, (a) how much charge remains 011 the 3.00-F capacitor? (b) How much charge remains on the 2.00-F capacitor? (c) What is the current in the resistor at this time?arrow_forward
- The human body can exhibit a wide range of resistances to current depending on the path of the current, contact area, and sweatiness of the skin. Suppose the resistance across the chest from the left hand to the right hand is 1.0 106 . (a) How much voltage is required to cause possible heart fibrillation in a man, which corresponds to 500 mA of direct current? (b) Why should rubber-soled shoes and rubber gloves be worn when working around electricity?arrow_forward(a) A defibrillator sends a 6.00-A current through the chest of a patient by applying a 10,000-V potential as in the figure below. What is the resistance of the path? (b) The defibrillator paddles make contact with the patient through a conducting gel that greatly reduces the path resistance. Discuss the difficulties that would ensue if a larger voltage were used to produce the same current through the patient, but with the path having perhaps 50 times the resistance. (Hint: The current must be about the same, so a higher voltage would imply greater power. Use this equation for power: P=I2 RP = .)arrow_forwardCurrents of approximately 0.06 A can be potentially fatal. Currents in that range can make the heart fibrillate (beat in an uncontrolled manner). The resistance of a dry human body can be approximately 100 k . (a) What voltage can cause 0.06 A through a dry human body? (b) When a human body is wet, the resistance can fall to 100 . What voltage can cause harm to a wet body?arrow_forward
- Consider the circuit below. The capacitor has a capacitance of 10 mF. The switch is closed and after a long time the capacitor is fully charged, (a) What is the current through each resistor a long time after the switch is closed? (b) What is the voltage across each resistor a long rime after the switch is closed? (c) What is the voltage across the capacitor a long time after the switch is closed? (d) What is the charge on the capacitor a long time after the switch is closed? (e) The switch is then opened. The capacitor discharges through the resistors. How long from the time before the current drops to one fifth of the initial value?arrow_forwardWhen resistors with different resistances are connected in parallel, which of the following must be the same for each resistor? Choose all correct answers, (a) potential difference (b) current (c) power delivered (d) charge entering each resistor in a given time interval (e) none of those answersarrow_forwardThree identical 60.0-W, 120-V lightbulbs are connected across a 120-V power source as shown in Figure P28.72. Assuming the resistance of each lightbulb is constant (even though in reality the resistance might increase markedly with current), find (a) the total power supplied by the power source and (b) the potential difference across each lightbulb.arrow_forward
- Construe! Your Own Problem Consider a rechargeable lithium cell that is to be used to power a camcorder. Construct a problem in which you calculate the internal resistance of the cell during normal operation. Also, calculate the minimum voltage output of a battery charger to be used to recharge your lithium cell. Among the things to be considered are the emf and useful terminal voltage of a lithium cell and the current it should be able to supply to a camcorder.arrow_forwardYou have a faculty position at a community college and are m (caching a class in automotive technology. You are deep in a discussion of using jumper cables to start a car with a dead battery from a car with a fresh battery. You have drawn the circuit diagram in Figure P27.16 to explain the process. The battery on the left is the live batten- in the correctly functioning car, with emf and internal resistance RL where the L. subscript refers to live. Its terminals are connected directly across those of the dead battery, in the middle of the diagram, with emf and internal resistance RD where the D subscript refers to "dead Then, the starter in the car with the dead battery is activated by closing the ignition switch, allowing the car to start. The resistance of the starter is Rs. A student raises his hand and asks, So is the dead battery being charged while the starter is operating? How do you respond?arrow_forwardThe terminals of a battery are connected across two resistors in parallel. The resistances of the resistors are not the same. Which of the following statements is correct? Choose all that are correct. (a) The resistor with the larger resistance carries more current than the other resistor. (b) The resistor with the larger resistance carries less current than the other resistor. (c) The potential difference across each resistor is the same. (d) The potential difference across the larger resistor is greater than the potential difference across the smaller resistor. (e) The potential difference is greater across the resistor closer to the battery.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY