College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 8PE
Referring to Figure 21.6: (a) Calculate P3 and note how it this module. (b) Find the total power supplied by the source and compare it with the sum of the powers dissipated by the resistors.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 10 Ω resistor and a 20 Ω resistor are connected in parallel with a power supply. If the power dissipated by the 10 Ω resistor is 100 W, the power dissipated by 20 Ω resistor is Blank 1 Watts.
what is the watts
The figure below shows an electrical circuit consisting of nine
resistors (all multiples of R=5.00) connected to an ideal 12V fem
3
source.
(a) Calculate the equivalent resistance of the circuit and the power it
dissipates.
(b) Find the electrical current flowing through each resistor.
(c) Calculate the potential difference and the power dissipated through
each resistor.
(d) Compare the powers dissipated by the entire circuit and each
resistor.
Midterm-Level
Problem!
AO
ww
R1
ww
R3
ww
R4
ww
R6
ww
R7
R8
ww
Во- ww
R2
Each resistor is 100 ohms, same as in class.
R5
www
R9
ww
The potential difference between point A and point B is 41 Volts
1) Simplify the circuit to a *single* resistor using series and parallel rules. (Hint: work from right to left,
simplifying a few at a time. You'll need to iterate between series and parallel.)
2) Use the total resistance of the whole circuit and the potential difference (41 volts) to determine the total current
pulled into the circuit. (Hint: this should match the result from class through *two* of the resistors.)
3) Why doesn't your answer match for the other 7 resistors?
Chapter 21 Solutions
College Physics
Ch. 21 - Prob. 1CQCh. 21 - Prob. 2CQCh. 21 - Prob. 3CQCh. 21 - Prob. 4CQCh. 21 - Prob. 5CQCh. 21 - Knowing that the severity of a shock depends on...Ch. 21 - Would your headlights dim when you start your...Ch. 21 - Some strings of holiday lights are wired in series...Ch. 21 - If two household lightbulbs rated 60 W and 100 W...Ch. 21 - Suppose you are doing a physics lab that asks you...
Ch. 21 - Before World War II, some radios got power through...Ch. 21 - Some light bulbs have three power settings (not...Ch. 21 - Is every emf a potential difference? Is every...Ch. 21 - Prob. 14CQCh. 21 - Given a battery, an assortment of resistors, and a...Ch. 21 - Two different 12-V automobile batteries on a store...Ch. 21 - What are the advantages and disadvantages of...Ch. 21 - Semitractor trucks use four large 12-V batteries....Ch. 21 - Prob. 19CQCh. 21 - Prob. 20CQCh. 21 - Prob. 21CQCh. 21 - Prob. 22CQCh. 21 - Prob. 23CQCh. 21 - Prob. 24CQCh. 21 - Suppose you are using a multimeter (one designed...Ch. 21 - Prob. 26CQCh. 21 - Prob. 27CQCh. 21 - Why can a null measurement be more accurate than...Ch. 21 - If a potentiometer is used to measure cell emfs on...Ch. 21 - Regarding the units involved in the relationship t...Ch. 21 - The RC time constant in heart defibrillation is...Ch. 21 - When making an ECG measurement, it is important to...Ch. 21 - Prob. 33CQCh. 21 - Prob. 34CQCh. 21 - Prob. 35CQCh. 21 - Prob. 36CQCh. 21 - A long, inexpensive extension cord is connected...Ch. 21 - Prob. 38CQCh. 21 - Prob. 39CQCh. 21 - (a) What is the resistance often 275-O resistors...Ch. 21 - (a) What is the resistance of a 1.00 102-O, a...Ch. 21 - What are the largest and smallest resistances you...Ch. 21 - An 1800-W toaster, a 1400-W electric frying pan,...Ch. 21 - Your car’s 30.0-W headlight and 2.40-kW starter...Ch. 21 - (a) Given a48.0-V battery and 24.0-O and 96.0-O...Ch. 21 - Referring to the example combining series and...Ch. 21 - Referring to Figure 21.6: (a) Calculate P3 and...Ch. 21 - Refer to Figure 21.7 and the discussion of lights...Ch. 21 - Prob. 10PECh. 21 - Show that if two resistors R1and R2are combined...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Standard automobile batteries have six lead-acid...Ch. 21 - Car bon-zinc dry cells (sometimes referred to as...Ch. 21 - What is the output voltage of a 3.0000-V lithium...Ch. 21 - (a) What is the terminal voltage of a large 1.54-V...Ch. 21 - What is the internal resistance of an automobile...Ch. 21 - (a) Find the terminal voltage of a 12.0-V...Ch. 21 - A car battery with a 12-V emf and an internal...Ch. 21 - The hot resistance of a flashlight bulb is 2.30 ,...Ch. 21 - The label or a portable radio recommends the use...Ch. 21 - An automobile starter motor has an equivalent...Ch. 21 - A child’s electronic toy is supplied by three...Ch. 21 - (a) What is the internal resistance of a voltage...Ch. 21 - A person with body resistance between his hands of...Ch. 21 - Electric fish generate current with biological...Ch. 21 - Integrated Concepts A 12.0-V emf automobile...Ch. 21 - Unreasonable Results A 1.58-V alkaline cell with a...Ch. 21 - Unreasonable Results (a) What is the internal...Ch. 21 - Prob. 31PECh. 21 - Prob. 32PECh. 21 - Verify the second equation in Example 21.5 by...Ch. 21 - Verify the third equation in Example 21.5 by...Ch. 21 - Prob. 35PECh. 21 - Prob. 36PECh. 21 - Prob. 37PECh. 21 - Prob. 38PECh. 21 - Solve Example 21.5, but use loop abcdefgha instead...Ch. 21 - Prob. 40PECh. 21 - Prob. 41PECh. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Prob. 50PECh. 21 - Suppose you measure the terminal voltage of a...Ch. 21 - A certain ammeter has a resistance of 5.00X10-5 ...Ch. 21 - A 1,00-?O voltmeter is placed in parallel with a...Ch. 21 - A 0.0200- ammeter is placed in series with a...Ch. 21 - Unreasonable Results Suppose you have a 40.0-...Ch. 21 - Unreasonable Results (a) What resistance would you...Ch. 21 - What is the emf x of a cell being measured in a...Ch. 21 - Calculate the emfx of a dry cell for which a...Ch. 21 - When an unknown resistance Rxis placed in a...Ch. 21 - To what value must you adjust R3to balance a...Ch. 21 - (a) What is the unknown emfx in a potentiometer...Ch. 21 - Suppose you want to measure resistances in the...Ch. 21 - The timing device in an automobile’s intermittent...Ch. 21 - A heart pacemaker fires 72 times a minute, each...Ch. 21 - The duration of a photographic flash is related to...Ch. 21 - A 2.00- and a 7.50-F capacitor can be connected in...Ch. 21 - After two time constants, what percentage of the...Ch. 21 - A 500- resistor, an uncharged 1.50-F capacitor and...Ch. 21 - A heart defibrillator being used on a patient has...Ch. 21 - An ECG monitor must have an RC time constant less...Ch. 21 - Prob. 71PECh. 21 - Using the exact exponential treatment, find how...Ch. 21 - Using the exact exponential treatment, find how...Ch. 21 - Integrated Concepts If you wish to take a picture...Ch. 21 - Integrated Concepts A flashing lamp in a Christmas...Ch. 21 - Integrated Concepts A 160F capacitor charged to...Ch. 21 - Unreasonable Results (a) Calculate the capacitance...Ch. 21 - Construct Your Own Problem Consider a camera's...Ch. 21 - Construe! Your Own Problem Consider a rechargeable...Ch. 21 - Prob. 1TPCh. 21 - Prob. 2TPCh. 21 - Prob. 3TPCh. 21 - Prob. 4TPCh. 21 - Prob. 5TPCh. 21 - Prob. 6TPCh. 21 - Prob. 7TPCh. 21 - Prob. 8TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
1. Compare and contrast the following terms:
a. dominant and recessive
b. genotype and phenotype
c. homozyg...
Genetic Analysis: An Integrated Approach (3rd Edition)
S
10. FIGURE EX6.10 shows the velocity graph of a 2.0 kg object as it moves along the x-axis. What is the net ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
HOW DO WE KNOW? In this chapter, we focused on extranuclear inheritance and how traits can be determined by gen...
Concepts of Genetics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- -/1 Points] DETAILS SERCP10 18.P.035. A charged capacitor is connected to a resistor and a switch as in the figure below. The circuit has a time constant of 2.50 s. Soon after the switch is closed, the charge on the capacitor is 81.0% of its initial charge. +Q www R (a) Find the time interval required for the capacitor to reach this charge. S (b) If R= 200 kn, what is the value of C? UFarrow_forwardProblem 10: If you try and measure the voltage of a battery with a voltmeter connected in series, you won't get a completely accurate measurement because of the internal resistance of the battery. To see how large this effect is, consider trying to measure the terminal voltage of a 1.585 V alkaline cell having an internal resistance of 52 2 by placing a 0.95 k2 voltmeter across its terminals. Randomized Variables ww R = 0.95 k2 r = 52 Q r emf Part (a) What current flows in A? Numeric : A numeric value is expected and not an expression. I = Part (b) Find the terminal voltage in V. Numeric : A numeric value is expected and not an expression. V = Part (c) To see how close the measured terminal voltage is to the emf, calculate their ratio. Numeric : A numeric value is expected and not an expression. V/e =arrow_forwarda) 17. Consider the process of discharging capacitor C through a resistor R. Refer to the Figure below. Using Kirchoff's loop rule, write down the (differential) equation relating the current / in the circuit and the charge Q on the capacitor. Note: The solution to the equation in Question (3a) for the initial condition Q(0) = Qo is given by b) c) Q(t) Que-t/RC = How much time does it take to discharge the capacitor R completely, represent your answer with a sketch of the plot of the capacitor's charge Q as a function of time t. How much time does it take to discharge the capacitor to half of the maximum value? Given C=10.0 uF, R= 30.0 k2, and Qo = 150 μC.arrow_forward
- (a) Calculate P3 and note how it compares with P3 found in the first two example problems in this module. (b) Find the total power supplied by the source and compare it with the sum of the powers dissipated by the resistors.arrow_forwardIn an RC series circuit, e = 12.0 V. R 1.26 NS2, and C 1.70 F. (a) Calculate the time constant. (b) Find the maximum charge that will appear on the capacitor during charging, (c) How long does it take for the charge to build up to 7.92 µC? I Switch S in in the figure is closed at time t = 0, to begin charging an initially uncharged capacitor of capacitance C = 15.1 F through a resistor of resistance R 22.1 2. At what time is the potential across the capacitor equal to that across the resistor? my Carrow_forwardYour answer partially correct. The figure displays two circuits with a charged capacitor that is to be discharged through a resistor when a switch is closed, In figure (a) below, R- 20.00 and C- 5.08 uF. In figure (b) below, Ry- 10.70 and C2- 8.16 uF. The ratio of the initlal charges on the two capacitors is goalg01- 1.57. At time t=0, both switches are closed. At what time t do the two capacitors have the same charge? (4) () Number 0.159 Units msarrow_forward
- You constructed a first order RC circuit with a 3 500-Ω resistor that is connected in series with a 3.0-F capacitor. What is the time constant if the battery you used is 9.0 V?arrow_forwardYou take a 6.34 V battery, a 226 kQ resistor, and an uncharged capacitor to put together a series circuit. You connect the battery and after 21.2 seconds the current in the circuit has fallen to 61% of its initial value. What is the value of the capacitor in microfarads (µF)? (Enter answer as an integer. Do not enter unit.) A Click Submit to complete this assessment. «< Question 2 of 2arrow_forwardConsider an initially uncharged capacitor in an RC circuit. The resistance is 20,000 Ohms and the capacitance is 500 x10• F. If the source potential being used to charge the capacitor is 15 V, how long after charging begins will the power delivered to the resistor be 25 % of its maximum value?arrow_forward
- If you try and measure the voltage of a battery with a voltmeter connected in series, you won't get a completely accurate measurement because of the internal resistance of the battery. To see how large this effect is, consider trying to measure the terminal voltage of a 1.585 V alkaline cell having an internal resistance of 47 Ω by placing a 0.75 kΩ voltmeter across its terminals. Randomized Variables R = 0.75 kΩr = 47 Ω A. What current flows in A? B. Find the terminal voltage in V. C. To see how close the measured terminal voltage is to the emf (Electro Motive Force), calculate their ratio.arrow_forward9. The following question is about power dissipation in a resistor, which we didnâÂÂt really cover in class. This topic is fairly easy though. In a circuit, all the power delivered by the battery must be dissipated by the elements to the circuit. This is simply a statement of the conservation of energy. How much energy dis- sipated depends on the resistance of the element and the voltage across the resistor, or the current through it. The relevant equa- tions for the problems are as follows. For a circuit element, the power dissipated (or generated) is P = IV, where V and I are the voltage across and current through a circuit element. We know that a resistor obeys OhmâÂÂS Law V = IR, which means that for a resistor, the power dissipated is P = 1R =V²/R. Consider the following two circuits with identical batteries and re- sistors. А В C R R RRS R If the power dissipated by the resistor in circuit A is P, what is the power dissipated by one resistor in circuit B? If the power…arrow_forward9. The following question is about power dissipation in a resistor, which we didnâÂÂt really cover in class. This topic is fairly easy though. In a circuit, all the power delivered by the battery must be dissipated by the elements to the circuit. This is simply a statement of the conservation of energy. How much energy dis- sipated depends on the resistance of the element and the voltage across the resistor, or the current through it. The relevant equa- tions for the problems are as follows. For a circuit element, the power dissipated (or generated) is P = IV, where V and I are the voltage across and current through a circuit element. We know that a resistor obeys OhmâÂÂs Law V = IR, which means that for a resistor, the power dissipated is P = 1²R=V²/R. Consider the following two circuits with identical batteries and re- sistors. А В C R R R RS R If the power dissipated by the resistor in circuit A is P, what is the power dissipated by one resistor in circuit B? If the power…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY