College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 6MCP
A steady current of 1.5 A flows through the solenoid shown in Figure 21.39. The current induced in the loop, as viewed from the right, is
Figure 21.39
Multiple-Choice Problems 6 and 7.
- A. directed clockwise.
- B. directed counterclockwise.
- C. zero.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5. A metal loop moves at constant velocity toward a long wire carrying a steady current I, as
shown in Figure 21.38. The current induced in the loop is
A. directed clockwise.
B. directed counterclockwise.
C. zero.
Figure 21.38
O
Loop
10
I
4. A toroidal solenoid has an average radius of 10.0 cm, a cross-sectional area of 10.0 cm2 and 1000
turns. How much energy is stored in this toroidal solenoid when the current in each turn is 100 A?
(A) 2.25 (B) 0.874 (C) 18.0 (D) 14.3 (E) 5.59 (F) 10.0
turn and having
Chapter 21 Solutions
College Physics (10th Edition)
Ch. 21 - Prob. 1CQCh. 21 - Suppose you drop a cylindrical magnet down a long,...Ch. 21 - A long, straight current-carrying wire passes...Ch. 21 - Two closely wound circular coils have the same...Ch. 21 - Prob. 5CQCh. 21 - Why does a transformer not work with dc current?Ch. 21 - Does Lenzs law say that the induced current in a...Ch. 21 - Does Faradays law say that a large magnetic flux...Ch. 21 - An airplane is in level flight over Antarctica,...Ch. 21 - Prob. 10CQ
Ch. 21 - A metal ring can be moved into and out of the...Ch. 21 - Prob. 12CQCh. 21 - A square loop of wire is pulled upward out of the...Ch. 21 - The two solenoids in Figure 21.36 are coaxial and...Ch. 21 - A metal ring is oriented with the plane of its...Ch. 21 - Prob. 4MCPCh. 21 - A metal loop moves at constant velocity toward a...Ch. 21 - A steady current of 1.5 A flows through the...Ch. 21 - Suppose you continue to hold the current in the...Ch. 21 - A vertical bar moves horizontally at constant...Ch. 21 - The vertical loops A and C in Figure 21.41 e are...Ch. 21 - The vertical loops A and C in Figure 21.41 e are...Ch. 21 - After the switch S in the circuit in Figure 21.42...Ch. 21 - A metal loop is being pushed at a constant...Ch. 21 - A circular area with a radius of 6.50 cm lies in...Ch. 21 - Prob. 2PCh. 21 - An empty cylindrical food container with a lid on...Ch. 21 - A single loop of wire with an area of 0.0900 m2 is...Ch. 21 - A coil of wire with 200 circular turns of radius...Ch. 21 - In a physics laboratory experiment, a coil with...Ch. 21 - A closely wound rectangular coil of 80 turns has...Ch. 21 - Prob. 8PCh. 21 - Prob. 9PCh. 21 - A circular loop of wire a radius of 12.0 cm is...Ch. 21 - A cardboard tube is wrapped with windings of...Ch. 21 - A circular loop of wire is in a soalially uniform...Ch. 21 - Prob. 13PCh. 21 - A solenoid carrying a current i is moving toward a...Ch. 21 - A metal bar is pulled to the right perpendicular...Ch. 21 - Two closed loops A and C are close to a long wire...Ch. 21 - A bar magnet is held above a circular loop of wire...Ch. 21 - The current in Figure 21.54 obeys the equation I =...Ch. 21 - A bar magnet is close to a metal loop. When this...Ch. 21 - A very thin 15.0 cm copper bar is aligned...Ch. 21 - When a thin 12.0 cm iron rod moves with a constant...Ch. 21 - You wish to produce a potential difference of 10 V...Ch. 21 - A 1.41 m bar moves through a uniform, 1.20 T...Ch. 21 - The conducting rod ab shown in Figure 21.58 makes...Ch. 21 - BO Measuring blood flow. Blood contains positive...Ch. 21 - Prob. 26PCh. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - Prob. 29PCh. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Prob. 32PCh. 21 - Prob. 33PCh. 21 - Prob. 34PCh. 21 - Prob. 35PCh. 21 - A transformer consists of 275 primary windings and...Ch. 21 - You need a transformer that will draw 15 W of...Ch. 21 - A step-up transformer. A transformer connected to...Ch. 21 - Prob. 39PCh. 21 - Prob. 40PCh. 21 - Prob. 41PCh. 21 - A solenoid 25.0 cm long and with a cross-sectional...Ch. 21 - Prob. 43PCh. 21 - Prob. 44PCh. 21 - Prob. 45PCh. 21 - Prob. 46PCh. 21 - Prob. 47PCh. 21 - Prob. 48PCh. 21 - Prob. 49PCh. 21 - A 12.0 F capacitor and a 5.25 mH inductor are...Ch. 21 - Prob. 51PCh. 21 - A 15.0 F capacitor is charged to 175 C and then...Ch. 21 - Prob. 53GPCh. 21 - A rectangular circuit is moved at a constant...Ch. 21 - Prob. 55GPCh. 21 - A flexible circular loop 6.50 cm in diameter lies...Ch. 21 - Prob. 57GPCh. 21 - Prob. 58GPCh. 21 - Consider the circuit in Figure 21.64 (a) Just...Ch. 21 - How many turns does this typical MRI magnet have?...Ch. 21 - BIO Quenching an MRI magnet. Magnets carrying very...Ch. 21 - If part of the magnet develops resistance and...Ch. 21 - BIO Quenching an MRI magnet. Magnets carrying very...Ch. 21 - Prob. 64PPCh. 21 - Consider the brain tissue at the level of the...Ch. 21 - Prob. 66PPCh. 21 - Which graph best represents the time t dependence...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Guitars have strings of different linear mass density. If the lowest density string and the highest density str...
University Physics Volume 1
13. A 50 kg box hangs from rope. What is the tension in the rope if:
a. The box is at rest?
b. The box moves ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Origin of Life Studies. We cannot go back in time to see exactly how life first originated on Earth, which mean...
Life in the Universe (4th Edition)
2.56 CALC A lunar lander is descending toward the moon’s surface. Until the lander reaches the surface, its hei...
University Physics (14th Edition)
A cylindrical log 15 cm in diameter and 65 cm long is glowing red hot in a fireplace. The logs emissivity is es...
Essential University Physics (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure 30.12 Figure 30.12 shows a circular loop of wire falling toward a wire carrying a current to the left. What is the direction of the induced current in the loop of wire? (a) clockwise (b) counterclockwise (c) zero (d) impossible to determinearrow_forward, (a) At what angle 0 is tlie torque on a current loop 90.0% of maximum? (b) 50.0% of maximum? (c) 10.0% of maximum?arrow_forwardFigure 22.62 shows a long straight wire just touching a loop carrying a current I1. Beth lie in the same plane. (a) What direction must the current I2 in the straight wire have to create a field at the center of the loop in the direction opposite to that created by the loop? (b) What is the ratio at I1/I2 that gives zero field strength at the center at the loop? (c) What is the direction of the field directly above the loop under this circumstance?arrow_forward
- A flat coil of wire has an inductance of 40.0 mH and a resistance of 5.00 . It is connected to a 22.0-V battery at the instant t = 0. Consider the moment when the current is 3.00 A. (a) At what rate is energy bring delivered by the battery? (b) What is the power being delivered to the resistance of the coil? (c) At what rate is energy being stored in the magnetic field of the coil? (d) What is the relationship among these three power values? (e) Is the relationship described in part (d) true at other instants as well? (f) Explain the relationship at the moment immediately after t = 0 and at a moment several seconds later.arrow_forwardSuppose that a rectangular toroid has 2000 windings and a self-inductance of 0.040 H. If h = 0.10 m, what is the current flowing through a rectangular toroid when the energy in its magnetic field is 2.0 × 10-6 J?arrow_forwardConsider the system pictured in Figure P28.26. A 15.0-cm horizontal wire of mass 15.0 g is placed between two thin, vertical conductors, and a uniform magnetic field acts perpendicular to the page. The wire is free to move vertically without friction on the two vertical conductors. When a 5.00-A current is directed as shown in the figure, the horizontal wire moves upward at constant velocity in the presence of gravity. (a) What forces act on the horizontal wire, and (b) under what condition is the wire able to move upward at constant velocity? (c) Find the magnitude and direction of the minimum magnetic Field required to move the wire at constant speed. (d) What happens if the magnetic field exceeds this minimum value? Figure P28.26arrow_forward
- Review. Figure P31.31 shows a bar of mass m = 0.200 kg that can slide without friction on a pair of rails separated by a distance = 1.20 m and located on an inclined plane that makes an angle = 25.0 with respect to the ground. The resistance of the resistor is R = 1.00 and a uniform magnetic field of magnitude B = 0.500 T is directed downward, perpendicular to the ground, over the entire region through which the bar moves. With what constant speed v does the bar slide along the rails?arrow_forwardDesign a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf =0 sin t. where 0=110V and 0=110V .arrow_forwardA solenoid with 4 x 107turns/m has an iron core placed in it whose magnetic susceptibility is 4.0 x 103. (a) If a cent of 2.0 A flows through the solenoid, what is the magnetic field in the iron core? (b) What is the effective surface current formed by the aligned atomic current loops in the iron core? (c) What is the self-inductance of the filled solenoid?arrow_forward
- (a) A nonferrous screwdriver is being used in a 2.00 T magnetic field. What maximum emf can be induced along its 12.0 cm length when it moves at 6.00 m/s? (b) Is it likely that this emf will have any consequences or even be noticed?arrow_forwardAil electron is moving at a speed of 1.0 104 in/s in a circular path of radius 2.0 cm inside a solenoid. The magnetic field of the solenoid is perpendicular to the plane of the electrons path. Find (a) the strength of the magnetic field inside the solenoid and (b) the current in the solenoid if it has 25 turns per centimeter.arrow_forwardA single-turn square loop of wire, 2.00 cm on each edge, carries a clockwise current of 0.200 A. The loop is inside a solenoid, with the plane of the loop perpendicular to the magnetic field of the solenoid. The solenoid has 30.0 turns/cm and carries a clockwise current of 15.0 A. Find (a) the force on each side of the loop and (b) the torque acting on the loop.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY