Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 24PQ
(a)
To determine
The heat exchanged between the system and surroundings when the temperature of the gas is lowered to
(b)
To determine
The heat exchanged between the system and surroundings when the gas is heated from
(c)
To determine
The heat capacity of helium.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A copper cylinder has a mass of 0.0758 kg and a specific heat of 386 J/kg Co. It is heated to 80.5° C and then put in 0.0657 kg of unknown liquid whose temperature is 19.5° C. The final temperature of the mixture is 31.9° C. What is the specific heat of the unknown liquid?
a. 875 J/kg C
b. 1000 J/kg C
c. 900 J/kg C
d. 1745 J/kg C
Ex2: The piston of a piston-cylinder device containing a gas has a mass of 60 kg and
a cross-sectional area of 0.04m², as shown below. The local atmospheric pressure is
0.97 bar and the gravitational acceleration is 9.8 m/s².
a. Determine the pressure inside the cylinder.
b. If some heat is transferred to the gas and its volume doubles, do
you expect the pressure inside the cylinder to change?
g = 9.81 m/s²
The thermal energy of 0.700 mol of a substance is increased by 900J.
A. What is the temperature change if the system is a monatomic gas?
B. What is the temperature change if the system is a diatomic gas?
C. What is the temperature change if the system is a solid?
Chapter 21 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 21.2 - Incorrect. Heat is not contained in Texas. The...Ch. 21.3 - In each situation listed, an objects temperature...Ch. 21.4 - Prob. 21.3CECh. 21.4 - Prob. 21.4CECh. 21.7 - Prob. 21.5CECh. 21.7 - Prob. 21.6CECh. 21.7 - Prob. 21.7CECh. 21.7 - Prob. 21.8CECh. 21.7 - Prob. 21.9CECh. 21 - Prob. 1PQ
Ch. 21 - Prob. 2PQCh. 21 - You extend an impromptu invitation to a friend for...Ch. 21 - Prob. 4PQCh. 21 - Prob. 5PQCh. 21 - Prob. 6PQCh. 21 - Prob. 7PQCh. 21 - Prob. 8PQCh. 21 - Prob. 9PQCh. 21 - Prob. 10PQCh. 21 - Prob. 11PQCh. 21 - Prob. 12PQCh. 21 - Prob. 13PQCh. 21 - Prob. 14PQCh. 21 - Prob. 15PQCh. 21 - Prob. 16PQCh. 21 - Prob. 17PQCh. 21 - Prob. 18PQCh. 21 - Prob. 19PQCh. 21 - From Table 21.1, the specific heat of milk is 3.93...Ch. 21 - Prob. 21PQCh. 21 - Prob. 22PQCh. 21 - An ideal gas is confined to a cylindrical...Ch. 21 - Prob. 24PQCh. 21 - You place frozen soup (T = 17C) in a microwave...Ch. 21 - A 25-g ice cube at 0.0C is heated. After it first...Ch. 21 - Prob. 27PQCh. 21 - Prob. 28PQCh. 21 - Prob. 29PQCh. 21 - Prob. 30PQCh. 21 - Consider the latent heat of fusion and the latent...Ch. 21 - Prob. 32PQCh. 21 - Prob. 33PQCh. 21 - A thermodynamic cycle is shown in Figure P21.34...Ch. 21 - Prob. 35PQCh. 21 - Figure P21.36 shows a cyclic thermodynamic process...Ch. 21 - Figure P21.37 shows a PV diagram for a gas that is...Ch. 21 - Prob. 38PQCh. 21 - Prob. 39PQCh. 21 - Prob. 40PQCh. 21 - Prob. 41PQCh. 21 - Prob. 42PQCh. 21 - Prob. 43PQCh. 21 - Prob. 44PQCh. 21 - Figure P21.45 shows a cyclic process ABCDA for...Ch. 21 - Prob. 46PQCh. 21 - Prob. 47PQCh. 21 - Prob. 48PQCh. 21 - Prob. 49PQCh. 21 - Prob. 50PQCh. 21 - Prob. 51PQCh. 21 - Prob. 52PQCh. 21 - Prob. 53PQCh. 21 - Prob. 54PQCh. 21 - Prob. 55PQCh. 21 - You extend an impromptu invitation to a friend for...Ch. 21 - Prob. 57PQCh. 21 - Prob. 58PQCh. 21 - A lake is covered with ice that is 2.0 cm thick....Ch. 21 - A concerned mother is dressing her child for play...Ch. 21 - Prob. 61PQCh. 21 - Prob. 62PQCh. 21 - Prob. 63PQCh. 21 - Prob. 64PQCh. 21 - Prob. 65PQCh. 21 - Prob. 66PQCh. 21 - Prob. 67PQCh. 21 - Prob. 68PQCh. 21 - Three 100.0-g ice cubes initially at 0C are added...Ch. 21 - Prob. 70PQCh. 21 - Prob. 71PQCh. 21 - Prob. 72PQCh. 21 - Prob. 73PQCh. 21 - Prob. 74PQCh. 21 - Prob. 75PQCh. 21 - Prob. 76PQCh. 21 - Prob. 77PQCh. 21 - Prob. 78PQCh. 21 - How much faster does a cup of tea cool by 1C when...Ch. 21 - The PV diagram in Figure P21.80 shows a set of...Ch. 21 - Prob. 81PQCh. 21 - Prob. 82PQCh. 21 - Prob. 83PQCh. 21 - Prob. 84PQCh. 21 - Prob. 85PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In 1986, a gargantuan iceberg broke away from the Ross Ice Shelf in Antarctica. It was approximately a rectangle 160 km long, 40.0 km wide, and 250 m thick. (a) What is the mass of this iceberg, given that the density of ice is 917kg/m3 ? (b) How much heat transfer (in joules) is needed to melt it? (c) How many years would it take sunlight alone to melt ice this thick, if the ice absorbs an average of 100W/m2, 12.00 h per day?arrow_forward(a) How much heat transfer is required to raise the temperature of a 0.750kg aluminum pot containing 2.50 kg of water from 30.0C to the boiling point and then boil away 0.750 kg of water? (b) How long does this take if the rate of heat transfer is 500 W 1watt=ljoule/second(lW=lJ/s) ?arrow_forwardIn an air conditioner, 12.65 MJ of heat transfer occurs from a cold environment in 1.00 h. (a) What mass of ice melting would involve the same heat transfer? (b) How many hours of operation would be equivalent to mailing 900 kg of ice? (c) If ice costs 20 cents per kg, do you think the air conditioner could be operated more cheaply than by simply using ice? Describe in detail how you evaluate the relative costs.arrow_forward
- A person inhales and exhales 2.00 L of 37.0C air, evaporating 4.00102g of water from the lungs and breathing passages with each breath. (a) How much heat transfer occurs due to evaporation in each breath? (b) What is the rate of heat transfer in watts if the person is breathing at a moderate rate of 18.0 breaths per minute? (c) If the inhaled air had a temperature of 20.0C, what is the rate of heat transfer for warming the air? (d) Discuss the total rate of heat transfer as it relates to typical metabolic rates. Will this breathing be a major form of heat transfer for this person?arrow_forwardA container holds 1.0 g of oxygen at a pressure of 8.0 atm.a. How much heat is required to increase the temperature by 100°C at constant pressure?b. How much will the temperature increase if this amount of heat energy is transferred to the gas at constant volume?arrow_forwardA 1.0 cm3 air bubble is released from the sandy bottom of a warm, shallow sea, where the gauge pressure is 1.5 atm. The bubble rises slowly enough that the air inside remains at the same constant temperature as the water.a. What is the volume of the bubble as it reaches the surface?b. As the bubble rises, is heat energy transferred from the waterto the bubble or from the bubble to the water? Explain.arrow_forward
- In a calorimetry experiment, two liquid substances X and Y with the same mass are placed in separate isolated containers. The specific heat of the substances are related by cX=2cY. If the substances receive the same amount of heat, what will be the relationship between the change in temperature, ΔTX and ΔTY? A. ΔTX=ΔTY B. ΔTX=2ΔTY C. ΔTX=4ΔTY D. 2ΔTX=ΔTYarrow_forwardAt one moment, an ideal gas occupies a volume of 1.2 Liters at a pressure of 2.00x10^5 Pa. It is cooled at constant pressure to a temperature of 1/3 it’s initial temp. A. What is the new volume of the gas (in Liters)? B. How many joules of work were done BY the gas in this process (be careful on whether this quantity is positive or negative)? C. “The internal energy of the gas increased during this process” Is this true or false?arrow_forwardConstant-pressure calorimeters can be calibrated by electrical heating. When a calorimeter containing 125 mL of water is supplied with 3890 J of electrical energy, its temperature rises from 22.6 oC to 28.6 oC. a. What is the total heat capacity of the calorimeter? b. What percentage of this is due to the water?arrow_forward
- A scientist is attempting to determine the specific heat of a new alloy of mass 0.12 kg. It is heated to 100 °C, then placed in a brass calorimeter. The mass of the calorimeter is 0.5 kg at an initial temperature of 34 °C. The calorimeter contains water of mass 0.25 kg at the same temperature. The equilibrium temperature of 75 °C is reached. a. Write an equation to describe the transfer of energy, using Q = mcAT. b. Write the equation with the speçific heat capacity of the alloy as the subject of the formula. Given that the specific heat.capacity of water is 4.19 x 10° J/kg°C and the с. calorimeter has a specific heat capacity of brass is 380 J/kg°C. What is the specific heat capacity of the alloy?arrow_forwarda. Compute the specific heat capacity at constant volume of nitrogen (N2) gas. The molar mass of N2 is 28.0 g/mol. b. You warm 1.15 kg of water at a constant 1L volume from 20∘C to 30∘C in a kettle. For the same amount of heat, how many kilograms of 20∘C air would you be able to warm to 30∘C? Make the simplifying assumption that air is 100% N2. What volume would this air occupy at 20∘C and a pressure of 1 atm ?arrow_forward1. A cylinder containing an ideal gas is rapidly compressed as a piston is very quickly pushed down. There are 30 moles of gas. Initial values are: T₁ = 350 K, P₁ = 300 kPa. The final Temperature is Tr 400 K. a. What kind of process is this? b. How much heat is exchanged during this process? C. What is the change in thermal energy of the gas during this process? فarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY