General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 21.15QP
(a)
Interpretation Introduction
Interpretation:
The electrode half-reactions for the given
Concept introduction:
Electrolysis:
- The decomposition of a
chemical reaction by usingelectric current is said to be electrolysis. - In this process, electric DC current is used to drive non-spontaneous chemical reaction.
- This technique is used to separate the metals or elements form its naturally occurring sources like ores and minerals.
(b)
Interpretation Introduction
Interpretation:
The electrode half-reactions for the given electrolysis has to be written.
Concept introduction:
Electrolysis:
- The decomposition of a chemical reaction by using electric current is said to be electrolysis.
- In this process, electric DC current is used to drive non-spontaneous chemical reaction.
- This technique is used to separate the metals or elements form its naturally occurring sources like ores and minerals.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
General Chemistry - Standalone book (MindTap Course List)
Ch. 21.9 - Considering the fact that N2 makes up about 80% of...Ch. 21.10 - Prob. 21.2CCCh. 21 - Prob. 21.1QPCh. 21 - Prob. 21.2QPCh. 21 - Prob. 21.3QPCh. 21 - Prob. 21.4QPCh. 21 - Prob. 21.5QPCh. 21 - Prob. 21.6QPCh. 21 - Prob. 21.7QPCh. 21 - Prob. 21.8QP
Ch. 21 - Prob. 21.9QPCh. 21 - Prob. 21.10QPCh. 21 - Prob. 21.11QPCh. 21 - Prob. 21.12QPCh. 21 - Prob. 21.13QPCh. 21 - Prob. 21.14QPCh. 21 - Prob. 21.15QPCh. 21 - Prob. 21.16QPCh. 21 - Prob. 21.17QPCh. 21 - Prob. 21.18QPCh. 21 - Prob. 21.19QPCh. 21 - Prob. 21.20QPCh. 21 - Prob. 21.21QPCh. 21 - Prob. 21.22QPCh. 21 - Prob. 21.23QPCh. 21 - Prob. 21.24QPCh. 21 - Prob. 21.25QPCh. 21 - Prob. 21.26QPCh. 21 - Prob. 21.27QPCh. 21 - Prob. 21.28QPCh. 21 - Prob. 21.29QPCh. 21 - Prob. 21.30QPCh. 21 - Prob. 21.31QPCh. 21 - Prob. 21.32QPCh. 21 - Prob. 21.33QPCh. 21 - Prob. 21.34QPCh. 21 - Prob. 21.35QPCh. 21 - Prob. 21.36QPCh. 21 - Prob. 21.37QPCh. 21 - Prob. 21.38QPCh. 21 - Prob. 21.39QPCh. 21 - Prob. 21.40QPCh. 21 - Prob. 21.41QPCh. 21 - Describe the steps in the Ostwald process for the...Ch. 21 - Prob. 21.43QPCh. 21 - Prob. 21.44QPCh. 21 - Prob. 21.45QPCh. 21 - Prob. 21.46QPCh. 21 - Prob. 21.47QPCh. 21 - Prob. 21.48QPCh. 21 - What is the most important commercial means of...Ch. 21 - Prob. 21.50QPCh. 21 - Prob. 21.51QPCh. 21 - Prob. 21.52QPCh. 21 - Prob. 21.53QPCh. 21 - Prob. 21.54QPCh. 21 - Prob. 21.55QPCh. 21 - Prob. 21.56QPCh. 21 - Prob. 21.57QPCh. 21 - Prob. 21.58QPCh. 21 - Prob. 21.59QPCh. 21 - Prob. 21.60QPCh. 21 - Prob. 21.61QPCh. 21 - A test tube contains a solution of one of the...Ch. 21 - Prob. 21.63QPCh. 21 - Prob. 21.64QPCh. 21 - Prob. 21.65QPCh. 21 - Prob. 21.66QPCh. 21 - Prob. 21.67QPCh. 21 - Prob. 21.68QPCh. 21 - Prob. 21.69QPCh. 21 - Prob. 21.70QPCh. 21 - Prob. 21.71QPCh. 21 - Prob. 21.72QPCh. 21 - Prob. 21.73QPCh. 21 - Prob. 21.74QPCh. 21 - Prob. 21.75QPCh. 21 - Prob. 21.76QPCh. 21 - Prob. 21.77QPCh. 21 - Prob. 21.78QPCh. 21 - Prob. 21.79QPCh. 21 - Prob. 21.80QPCh. 21 - Prob. 21.81QPCh. 21 - Prob. 21.82QPCh. 21 - Prob. 21.83QPCh. 21 - Prob. 21.84QPCh. 21 - Prob. 21.85QPCh. 21 - Prob. 21.86QPCh. 21 - Sketch a diagram showing the formation of energy...Ch. 21 - Sketch a diagram showing the formation of energy...Ch. 21 - Prob. 21.89QPCh. 21 - Prob. 21.90QPCh. 21 - Prob. 21.91QPCh. 21 - Prob. 21.92QPCh. 21 - Prob. 21.93QPCh. 21 - Prob. 21.94QPCh. 21 - Francium was discovered as a minor decay product...Ch. 21 - Prob. 21.96QPCh. 21 - Prob. 21.97QPCh. 21 - Prob. 21.98QPCh. 21 - Prob. 21.99QPCh. 21 - Prob. 21.100QPCh. 21 - Prob. 21.101QPCh. 21 - Prob. 21.102QPCh. 21 - Prob. 21.103QPCh. 21 - Prob. 21.104QPCh. 21 - Prob. 21.105QPCh. 21 - Prob. 21.106QPCh. 21 - Prob. 21.107QPCh. 21 - Prob. 21.108QPCh. 21 - Prob. 21.109QPCh. 21 - Prob. 21.110QPCh. 21 - Prob. 21.111QPCh. 21 - Prob. 21.112QPCh. 21 - Prob. 21.113QPCh. 21 - Prob. 21.114QPCh. 21 - Prob. 21.115QPCh. 21 - Prob. 21.116QPCh. 21 - Prob. 21.117QPCh. 21 - Prob. 21.118QPCh. 21 - Prob. 21.119QPCh. 21 - Prob. 21.120QPCh. 21 - Prob. 21.121QPCh. 21 - Prob. 21.122QPCh. 21 - Prob. 21.123QPCh. 21 - Prob. 21.124QPCh. 21 - Prob. 21.125QPCh. 21 - Prob. 21.126QPCh. 21 - Prob. 21.127QPCh. 21 - Prob. 21.128QPCh. 21 - Prob. 21.129QPCh. 21 - Prob. 21.130QPCh. 21 - Prob. 21.131QPCh. 21 - Prob. 21.132QPCh. 21 - Prob. 21.133QPCh. 21 - Prob. 21.134QPCh. 21 - Prob. 21.135QPCh. 21 - Prob. 21.136QPCh. 21 - Prob. 21.137QPCh. 21 - Prob. 21.138QPCh. 21 - Prob. 21.139QPCh. 21 - Prob. 21.140QPCh. 21 - Prob. 21.141QPCh. 21 - Prob. 21.142QPCh. 21 - Prob. 21.143QPCh. 21 - Phosphorous acid, H3PO3, is oxidized to phosphoric...Ch. 21 - Prob. 21.145QPCh. 21 - Prob. 21.146QPCh. 21 - Prob. 21.147QPCh. 21 - Prob. 21.148QPCh. 21 - What are the oxidation numbers of sulfur in each...Ch. 21 - What are the oxidation numbers of sulfur in each...Ch. 21 - Prob. 21.151QPCh. 21 - Prob. 21.152QPCh. 21 - Prob. 21.153QPCh. 21 - Prob. 21.154QPCh. 21 - Prob. 21.155QPCh. 21 - Prob. 21.156QPCh. 21 - Chlorine can be prepared by oxidizing chloride ion...Ch. 21 - Prob. 21.158QPCh. 21 - Prob. 21.159QPCh. 21 - Prob. 21.160QPCh. 21 - Prob. 21.161QPCh. 21 - Prob. 21.162QPCh. 21 - Prob. 21.163QPCh. 21 - Prob. 21.164QPCh. 21 - Prob. 21.165QPCh. 21 - Prob. 21.166QPCh. 21 - Prob. 21.167QPCh. 21 - Xenon trioxide, XeO3, is reduced to xenon in...Ch. 21 - Prob. 21.169QPCh. 21 - Prob. 21.170QPCh. 21 - Prob. 21.171QPCh. 21 - Prob. 21.172QPCh. 21 - Prob. 21.173QPCh. 21 - Prob. 21.174QPCh. 21 - Prob. 21.175QPCh. 21 - Prob. 21.176QPCh. 21 - Prob. 21.177QPCh. 21 - Prob. 21.178QPCh. 21 - Prob. 21.179QPCh. 21 - Prob. 21.180QPCh. 21 - Prob. 21.181QPCh. 21 - Prob. 21.182QPCh. 21 - Prob. 21.183QPCh. 21 - Prob. 21.184QPCh. 21 - Prob. 21.185QPCh. 21 - Prob. 21.186QPCh. 21 - Prob. 21.187QPCh. 21 - Sodium perchlorate, NaClO4, is produced by...Ch. 21 - The amount of sodium hypochlorite in a bleach...Ch. 21 - Prob. 21.190QPCh. 21 - Prob. 21.191QPCh. 21 - Prob. 21.192QPCh. 21 - Prob. 21.193QPCh. 21 - Prob. 21.194QPCh. 21 - Prob. 21.195QPCh. 21 - Prob. 21.196QPCh. 21 - Prob. 21.197QPCh. 21 - Prob. 21.198QPCh. 21 - Prob. 21.199QPCh. 21 - Prob. 21.200QPCh. 21 - Prob. 21.201QPCh. 21 - Prob. 21.202QPCh. 21 - Prob. 21.203QPCh. 21 - Prob. 21.204QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forward(a) Write equations for the half-reactions that occur at the cathode and the anode when an aqueous solution of KCl is electrolyzed. Which chemical species is oxidized, and which chemical species is reduced in this reaction? (b) Predict the products formed when an aqueous solution of CsI is electrolyzed.arrow_forwardBriefly explain why different products are obtained from the electrolysis of molten NaCl and the electrolysis of a dilute aqueous solution of NaCl.arrow_forward
- Consider the following cell reaction at 25C. 2Cr(s)+3Fe2+(aq)2Cr3+(aq)+3Fe(s) Calculate the standard cell potential of this cell from the standard electrode potentials, and from this obtain G for the cell reaction. Use data in Appendix C to calculate H; note that Cr(H2O)63+(aq) equals Cr3+(aq). Use these values of H and G to obtain S for the cell reaction.arrow_forwardAn electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forward
- When molten lithium chloride, LiCl, is electrolyzed, lithium metal is liberated at the cathode. How many grams of lithium are liberated when 2.00 103 C of charge passes through the cell?arrow_forwardAs an example of an electrolytic cell, the text states: Sodium chloride is electrolyzed commercially in an apparatus called the Downs cell to produce sodium and chlorine. This is a high-temperature operation; the electrolyte is molten NaCl. Write the half-reaction equations for the changes taking place at each electrode. Is the electrode at which sodium is produced the anode or the cathode? The Downs cell electrolyzes molten melted sodium chloride, producing sodium and chlorine.arrow_forwardChlorine, Cl2, is produced commercially by the electrolysis of aqueous sodium chloride. The anode reaction is 2Cl(aq)Cl2(g)+2e How long will it take to produce 2.00 kg of chlorine if the current is 5.00 102 A?arrow_forward
- Electrochemical Cells II Consider this cell running under standard conditions: Ni(s)Ni2(aq)Cu+(aq)Cu(s) a Is this cell a voltaic or an electrolytic cell? How do you know? b Does current flow in this cell spontaneously? c What is the maximum cell potential for this cell? d Say the cell is connected to a voltmeter. Describe what you might see for an initial voltage and what voltage changes, if any, you would observe as time went by. e What is the free energy of this cell when it is first constructed? f Does the free energy of the cell change over time as the cell runs? If so, how does it change?arrow_forwardOne of the few industrial-scale processes that produce organic compounds electrochemically is used by the Monsanto Company to produce1,4-dicyanobutane. The reduction reaction is 2CH2CHCH+2H++2eNC(CH2)4CN The NC(CH2)4CN is then chemically reduced using hydrogen gas to H2N(CH2)6NH2, which is used in the production of nylon. What current must be used to produce 150.kg NC(CH2)4CN per hour?arrow_forwardZinc is produced by electrolytic refining. The electrolytic process, which is similar to that for copper, can be represented by the two half-reactions Zn(impure,s)Zn2++2eZn2++2eZn(pure,s) For this process, a voltage of 3.0 V is used. How many kilowatt hours are needed to produce one metric ton of pure zinc?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY