EBK MATHEMATICS FOR MACHINE TECHNOLOGY
EBK MATHEMATICS FOR MACHINE TECHNOLOGY
8th Edition
ISBN: 9781337798396
Author: SMITH
Publisher: CENGAGE LEARNING - CONSIGNMENT
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 16A

Figure 21−9 shows a compound gear train. Gears B and C are keyed to the same shaft; therefore, they turn at the same speed. Gear A and gear C are driving gears. Gear B and gear D are driven gears. Set up a proportion for each problem and determine the unknown values, x, y, and z in the table. Round the answers to 1 decimal place where necessary.

Chapter 21, Problem 16A, Figure 219 shows a compound gear train. Gears B and C are keyed to the same shaft; therefore, they

Expert Solution
Check Mark
To determine

(a)

To find the speed of the different gears given in the problem.

Answer to Problem 16A

Speed of gear B is x= 320 rpm.

Speed of gear C is y= 320 rpm.

Speed of gear D is z= 800 rpm.

Explanation of Solution

Given information:

A gear and pinion arrangement is given as below.

  EBK MATHEMATICS FOR MACHINE TECHNOLOGY, Chapter 21, Problem 16A , additional homework tip  1

Number of teeth on gear A=80, Number of teeth on gear B=30,Number of teeth on gear C=50, Number of teeth on gear D=20, Y1 speed of gear A=120.0 rpm, speed of gear B=xrpm,speed of gear C=yrpm,speed of gear D=zrpm,

Calculation:

We have been given below information,

  Number of teeth on gear A=80, Number of teeth on gear B=30,Number of teeth on gear C=50, Number of teeth on gear D=20, y speed of gear A=120.0 rpm, speed of gear B=xrpm,speed of gear C=yrpm,speed of gear D=zrpm,

As we know that in a gear arrangement,

13 Teeth in driving gear Teeth in driven gear =Revolutions in driven gear Revolution in driving gear

So,

  Teeth in driving gear A Teeth in driven gear B=Revolutions in driven gear B Revolution in driving gearA8030=x rpm120.0Applying cross multiplication,30x=80×120.0 rpmx=80×120.030rpmx=320 rpm

Hence, speed of gear B is

  320 rpm.

Since, gear B and C are on same shaft. So, speed of both gear is equal.

Therefore, speed of gear C is y= 320 rpm.

Again,

  Teeth in driving gear C Teeth in driven gear D=Revolutions in driven gear D Revolution in driving gearC5020=z rpm320.0Applying cross multiplication,20z=50×320.0 rpmz=50×320.020rpmz=800.0 rpm

Hence, speed of gear D is 800 rpm.

Thus, speed of gear B is x= 320 rpm.

Speed of gear C is y= 320 rpm.

Speed of gear D is z= 800 rpm.

Expert Solution
Check Mark
To determine

(b)

To find the number of teeth in the gear and the speed of the gear.

Answer to Problem 16A

Number of teeth in gear B is x= 20.

Number of teeth in gear D is y= 30.

Speed of gear C is z= 300.0 rpm.

Explanation of Solution

Given information:

A gear and pinion arrangement is given as below.

  EBK MATHEMATICS FOR MACHINE TECHNOLOGY, Chapter 21, Problem 16A , additional homework tip  2

Number of teeth on gear A=60, Number of teeth on gear B=x,Number of teeth on gear C=45, Number of teeth on gear D=y, speed of gear A=100.0 rpm, speed of gear B=300.0rpm,speed of gear C=zrpm,speed of gear D=450.0rpm,

Calculation:

We have been given below information,

  Number of teeth on gear A=60, Number of teeth on gear B=x,Number of teeth on gear C=45, Number of teeth on gear D=y, speed of gear A=100.0 rpm, speed of gear B=300.0rpm,speed of gear C=zrpm,speed of gear D=450.0rpm,

As we know that in a gear arrangement,

  Teeth in driving gear Teeth in driven gear =Revolutions in driven gear Revolution in driving gear

So,

  Teeth in driving gear A Teeth in driven gear B=Revolutions in driven gear B Revolution in driving gearA60x=300.0 100.0Applying cross multiplication,300.0x=60×100.0x=60×100.0300.0x=20

Hence, number of teeth in gear B is x= 20.

Since, gear B and C are on same shaft. So, speed of both gear is equal.

Therefore, speed of gear C is z= 300.0 rpm.

Again,

  Teeth in driving gear C Teeth in driven gear D=Revolutions in driven gear D Revolution in driving gearC45y=450.0300.0Applying cross multiplication,450.0y=45×300.0y=45×300.0450.0y=30

Hence, number of teeth in gear D is y= 30.

Thus, number of teeth in gear B is x= 20.

Number of teeth in gear D is y= 30.

Speed of gear C is z= 300.0 rpm.

Expert Solution
Check Mark
To determine

(c)

To find the number of teeth as well as speed of the gear.

Answer to Problem 16A

Number of teeth in gear A is x= 20.57.

Speed of gear B is y= 168.0 rpm.

Speed of gear C is z= 168.0 rpm.

Explanation of Solution

Given information:

A gear and pinion arrangement is given as below.

  EBK MATHEMATICS FOR MACHINE TECHNOLOGY, Chapter 21, Problem 16A , additional homework tip  3

Number of teeth on gear A=x, Number of teeth on gear B=24,Number of teeth on gear C=60, Number of teeth on gear D=36, speed of gear A=144.0 rpm, speed of gear B=yrpm,speed of gear C=zrpm,speed of gear D=280.0rpm,

Calculation:

We have been given below information,

  Number of teeth on gear A=x, Number of teeth on gear B=24,Number of teeth on gear C=60, Number of teeth on gear D=36, speed of gear A=144.0 rpm, speed of gear B=yrpm,speed of gear C=zrpm,speed of gear D=280.0rpm,

As we know that in a gear arrangement,

  Teeth in driving gear Teeth in driven gear =Revolutions in driven gear Revolution in driving gear

So,

  Teeth in driving gear A Teeth in driven gear B=Revolutions in driven gear B Revolution in driving gearAx24=144.0 yApplying cross multiplication,xy=24×144.0      ...eq(i)

Since, gear B and C are on same shaft. So, speed of both gear is equal. i.e. y=z.

Again,

  Teeth in driving gear C Teeth in driven gear D=Revolutions in driven gear D Revolution in driving gearC6036=280.0zApplying cross multiplication,60z=36×280.0z=36×280.060z=168

Hence, speed of gear B and gear C is 168 rpm. i.e. y=168 and z=168.

Putting, y=168 in eq(i),

  xy=24×144.0168x=24×144.0       {Put y=168}x=24×144.0168x=20.57

Thus, number of teeth in gear A is x= 20.57.

Speed of gear B is y= 168.0 rpm.

Speed of gear C is z= 168.0 rpm.

Expert Solution
Check Mark
To determine

(d)

To find the speed of the different gears and the number of teeth.

Answer to Problem 16A

Number of teeth in gear C is x= 30.

Speed of gear A is y=79.55 rpm.

Speed of gear B is z=175.0 rpm.

Explanation of Solution

Given information:

A gear and pinion arrangement is given as below.

  EBK MATHEMATICS FOR MACHINE TECHNOLOGY, Chapter 21, Problem 16A , additional homework tip  4

Number of teeth on gear A=55, Number of teeth on gear B=25,Number of teeth on gear C=x, Number of teeth on gear D=15, speed of gear A=y rpm, speed of gear B=zrpm,speed of gear C=175.0rpm,speed of gear D=350.0rpm,

Calculation:

We have been given below information,

  Number of teeth on gear A=55, Number of teeth on gear B=25,Number of teeth on gear C=x, Number of teeth on gear D=15, speed of gear A=y rpm, speed of gear B=zrpm,speed of gear C=175.0rpm,speed of gear D=350.0rpm,

As we know that in a gear arrangement,

  Teeth in driving gear Teeth in driven gear =Revolutions in driven gear Revolution in driving gear

So,

  Teeth in driving gear A Teeth in driven gear B=Revolutions in driven gear B Revolution in driving gearA5525=z yApplying cross multiplication,55y=25z      ...eq(i)

Since, gear B and C are on same shaft. So, speed of both gear is equal. i.e. z=175.0.

Putting x=175.0 in above eq(i),

  55y=25×175.0y=25×175.055y=79.55

Hence, speed of gear A is y=79.55 rpm.

Again,

  Teeth in driving gear C Teeth in driven gear D=Revolutions in driven gear D Revolution in driving gearCx15=350.0175.0Applying cross multiplication,175.0x=15×350.0x=15×350.0175.0x=30

Hence, number of teeth in gear C is x= 30.

Thus, number of teeth in gear C is x= 30.

Speed of gear A is y=79.55 rpm.

Speed of gear B is z=175.0 rpm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
dout. minutes. Write an equation relating o the number of pages p typed. type 10 pages at this rate? 5/2 3.
Use the right triangle in the figure below. (Round your answers to three significant digits.) Voltage applied Voltage across coil Voltage across resistance (a) Find the voltage (in V) applied if the voltage across the coil is 34.4 V and the voltage across the resistance is 40.3 V. (b) Find the voltage (in V) across the resistance if the voltage applied is 376 V and the voltage across the coil is 268 V. V (c) Find the voltage (in V) across the coil if the voltage applied is 446 V and the voltage across the resistance is 371 V. V
If the vertical height of the roller coaster below is 315 feet, find d to the nearest foot.
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
What is a Linear Equation in One Variable?; Author: Don't Memorise;https://www.youtube.com/watch?v=lDOYdBgtnjY;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY