ANATOMY PHYS VOL II W ACCESS CUSTOM
9th Edition
ISBN: 9781264412303
Author: SALADIN
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20.2, Problem 11AYLO
Summary Introduction
To discuss:
The mathematical relationship between peripheral resistance and vessel radius; why this related to the laminar flow of blood; and why it makes vasoreflexes such a powerful influence on the blood flow.
Introduction:
In order to keep the blood flowing in the artery, the heart must pulsate pressure. This is referred to as blood pressure (BP). The high blood pressure can lead to hypertension, and low blood pressure can lead to hypotension. This can be measured by using a sphygmomanometer. The resistance and pressure affecting the movement of blood or blood flow is called as peripheral resistance. The resistance in blood flow occurs due to the blood viscosity, vessel radius, and vessel length.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The mathematical relationship between peripheral resistance and vessel radius; why this is related to the laminar flow of blood; and why it makes vasoreflexes such a powerful influence on blood flow
Why arterial flow is pulsatile but capillaryand venous flow are not
A typical value for cerebral blood flow and why its constancy is important
Chapter 20 Solutions
ANATOMY PHYS VOL II W ACCESS CUSTOM
Ch. 20.1 - Prob. 1BYGOCh. 20.1 - Prob. 2BYGOCh. 20.1 - Prob. 3BYGOCh. 20.1 - Prob. 4BYGOCh. 20.1 - Prob. 5BYGOCh. 20.1 - Prob. 6BYGOCh. 20.1 - Definitions of arteries, veins, and capillaries...Ch. 20.1 - Prob. 2AYLOCh. 20.1 - Prob. 3AYLOCh. 20.1 - Prob. 4AYLO
Ch. 20.1 - Prob. 5AYLOCh. 20.1 - Prob. 6AYLOCh. 20.1 - Prob. 7AYLOCh. 20.1 - Prob. 8AYLOCh. 20.1 - Prob. 9AYLOCh. 20.1 - Prob. 10AYLOCh. 20.1 - Prob. 11AYLOCh. 20.1 - Prob. 12AYLOCh. 20.1 - Prob. 13AYLOCh. 20.1 - Prob. 14AYLOCh. 20.1 - Prob. 15AYLOCh. 20.2 - Prob. 7BYGOCh. 20.2 - Prob. 8BYGOCh. 20.2 - Prob. 9BYGOCh. 20.2 - Prob. 10BYGOCh. 20.2 - Prob. 11BYGOCh. 20.2 - Prob. 12BYGOCh. 20.2 - Prob. 1AYLOCh. 20.2 - Prob. 2AYLOCh. 20.2 - Prob. 3AYLOCh. 20.2 - Prob. 4AYLOCh. 20.2 - Why arterial expansion and recoil during the...Ch. 20.2 - Prob. 6AYLOCh. 20.2 - Prob. 7AYLOCh. 20.2 - Prob. 8AYLOCh. 20.2 - Prob. 9AYLOCh. 20.2 - Prob. 10AYLOCh. 20.2 - Prob. 11AYLOCh. 20.2 - Why blood velocity declines from aorta to...Ch. 20.2 - Prob. 13AYLOCh. 20.2 - Prob. 14AYLOCh. 20.2 - Prob. 15AYLOCh. 20.2 - Prob. 16AYLOCh. 20.2 - Prob. 17AYLOCh. 20.2 - Prob. 18AYLOCh. 20.2 - Prob. 19AYLOCh. 20.3 - Prob. 13BYGOCh. 20.3 - Prob. 14BYGOCh. 20.3 - Prob. 15BYGOCh. 20.3 - State the three fundamental causes of edema and...Ch. 20.3 - Prob. 1AYLOCh. 20.3 - Prob. 2AYLOCh. 20.3 - Prob. 3AYLOCh. 20.3 - Prob. 4AYLOCh. 20.3 - Prob. 5AYLOCh. 20.3 - Prob. 6AYLOCh. 20.3 - Relative amounts of fluid given off and reabsorbed...Ch. 20.3 - The role of solvent drag in capillary exchangeCh. 20.3 - Why the dynamics of capillary absorption can...Ch. 20.3 - Prob. 10AYLOCh. 20.3 - Prob. 11AYLOCh. 20.4 - Prob. 17BYGOCh. 20.4 - Prob. 18BYGOCh. 20.4 - Prob. 19BYGOCh. 20.4 - Prob. 1AYLOCh. 20.4 - Prob. 2AYLOCh. 20.4 - Prob. 3AYLOCh. 20.4 - Prob. 4AYLOCh. 20.4 - Prob. 5AYLOCh. 20.4 - Prob. 6AYLOCh. 20.4 - Prob. 7AYLOCh. 20.4 - Prob. 8AYLOCh. 20.5 - Prob. 20BYGOCh. 20.5 - Prob. 21BYGOCh. 20.5 - Prob. 22BYGOCh. 20.5 - Prob. 23BYGOCh. 20.5 - Prob. 1AYLOCh. 20.5 - Prob. 2AYLOCh. 20.5 - Prob. 3AYLOCh. 20.5 - Variability of skeletal muscle perfusion; what...Ch. 20.5 - Prob. 5AYLOCh. 20.6 - Prob. 24BYGOCh. 20.6 - Prob. 25BYGOCh. 20.6 - Prob. 1AYLOCh. 20.6 - Prob. 2AYLOCh. 20.6 - Prob. 3AYLOCh. 20.7 - Prob. 26BYGOCh. 20.7 - Prob. 27BYGOCh. 20.7 - Prob. 28BYGOCh. 20.7 - Prob. 29BYGOCh. 20.7 - For all named blood vessels in this outline, their...Ch. 20.7 - The ascending aorta, aortic arch, and descending...Ch. 20.7 - Branches that arise from the ascending aorta and...Ch. 20.7 - Four principal arteries of the neck: the common...Ch. 20.7 - The external and internal carotid arteries;...Ch. 20.7 - Prob. 6AYLOCh. 20.7 - Prob. 7AYLOCh. 20.7 - Dural venous sinuses; the superior sagittal,...Ch. 20.7 - Prob. 9AYLOCh. 20.7 - Prob. 10AYLOCh. 20.7 - Prob. 11AYLOCh. 20.7 - Prob. 12AYLOCh. 20.7 - Prob. 13AYLOCh. 20.7 - Branches of the abdominal aorta: inferior phrenic...Ch. 20.7 - Prob. 15AYLOCh. 20.7 - Prob. 16AYLOCh. 20.7 - Prob. 17AYLOCh. 20.7 - Prob. 18AYLOCh. 20.7 - Prob. 19AYLOCh. 20.7 - Prob. 20AYLOCh. 20.7 - Prob. 21AYLOCh. 20.7 - Prob. 22AYLOCh. 20.8 - Prob. 30BYGOCh. 20.8 - Prob. 31BYGOCh. 20.8 - Prob. 32BYGOCh. 20.8 - Prob. 33BYGOCh. 20.8 - Prob. 1AYLOCh. 20.8 - Prob. 2AYLOCh. 20.8 - Prob. 3AYLOCh. 20.8 - Prob. 4AYLOCh. 20.8 - Prob. 5AYLOCh. 20.8 - Prob. 6AYLOCh. 20.8 - Prob. 7AYLOCh. 20.8 - Prob. 8AYLOCh. 20.8 - Prob. 9AYLOCh. 20 - Blood often flows into a capillary bed from a. the...Ch. 20 - Prob. 2TYRCh. 20 - A blood vessel adapted to withstand a high pulse...Ch. 20 - Prob. 4TYRCh. 20 - Prob. 5TYRCh. 20 - Prob. 6TYRCh. 20 - Blood flows fester in a venule than in a capillary...Ch. 20 - In a case where interstitial hydrostatic pressure...Ch. 20 - Intestinal blood flows to the liver by way of a....Ch. 20 - Prob. 10TYRCh. 20 - The highest arterial blood pressure attained...Ch. 20 - Prob. 12TYRCh. 20 - Prob. 13TYRCh. 20 - Prob. 14TYRCh. 20 - Prob. 15TYRCh. 20 - Prob. 16TYRCh. 20 - Prob. 17TYRCh. 20 - Prob. 18TYRCh. 20 - Prob. 19TYRCh. 20 - Prob. 20TYRCh. 20 - Prob. 1BYMVCh. 20 - Prob. 2BYMVCh. 20 - Prob. 3BYMVCh. 20 - Prob. 4BYMVCh. 20 - Prob. 5BYMVCh. 20 - -orumCh. 20 - Prob. 7BYMVCh. 20 - Prob. 8BYMVCh. 20 - Prob. 9BYMVCh. 20 - Prob. 10BYMVCh. 20 - Prob. 1WWTSCh. 20 - Blood always passes through exactly one capillary...Ch. 20 - Prob. 3WWTSCh. 20 - Prob. 4WWTSCh. 20 - Prob. 5WWTSCh. 20 - The femoral triangle is bordered by the inguinal...Ch. 20 - Prob. 7WWTSCh. 20 - Prob. 8WWTSCh. 20 - Prob. 9WWTSCh. 20 - Prob. 10WWTSCh. 20 - Prob. 1TYCCh. 20 - Prob. 2TYCCh. 20 - Prob. 3TYCCh. 20 - Prob. 4TYCCh. 20 - Discuss why it is advantageous to have...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- local direct control of blood flow through a tissuearrow_forwardThe anatomical structures of the conductance in the heart.What is the function and the physicalcharactersitics of circulation?arrow_forwardcirculation in fish, amphibians and mammals. an explanation of what type of circulatory system these animals have.arrow_forward
- How blood fulfil the role of integrating organs and organ systemsarrow_forwardThe Importance of the Electrocardiogram and Holter Monitor in the Cardiovascular System Instructions The standard EKG consists of 10 sensors that record 12 leads of the heart’s electrical activity from different angles, allowing for a thorough three-dimensional interpretation of its activity. This is transmitted by the electrodes to the equipment to be interpreted and is used to diagnose cardiac medical conditions. In case of an abnormal EKG, the second step would be to use a Holter monitor. Questions Where will you place the electrodes when performing and EKG? Why? What are the different lead types, connections, and placements? When you conclude an EKG, what are the different components that you need to observe and confirm before you disconnect the patient? Can you explain the difference between normal, abnormal, and artifacts? What is a Holter monitor? Under what circumstances would one be ordered for a patient? How do you use a Holter monitor? Educate a patient: What you…arrow_forwardorgans, function, structure and sections of the cardiovascular systemarrow_forward
- Blood vessel structure and functionThe two-way exchange of substances between blood and the body occurs through what vessels?Why do the above vessels permit the diffusion of materials whereas arteries and veins do not (what is it about their structure that matches their function)?Why are valves located in veins, but not arteries?arrow_forwardone completed round of systole and diastolearrow_forwardThe erythrocytesedimentation rate (heaviness) testis oftenused for a blood sample as a diagnosis of immune disorders of the body andsome other diseases. Assuming that the redbloodcells are about a sphere of diameter (5 um) and density(g/ml1.125) and the density andviscosity of the plasma in which the redbloodcells are settled (Pa.s), (1025 kg/m3 10-3x1.5) respectively The acceleration m/s29.81 Calculate therate of sedimentation (settling speed) of red bloodcells. 90x 10-6m/min O 9x10-6 m/s Oarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage LearningUnderstanding Health Insurance: A Guide to Billin...Health & NutritionISBN:9781337679480Author:GREENPublisher:Cengage
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Understanding Health Insurance: A Guide to Billin...
Health & Nutrition
ISBN:9781337679480
Author:GREEN
Publisher:Cengage