Figure 20.35 shows a thin, uniformly charged disk of radius R . Imagine the disk divided into rings of varying radii r , as suggested in the figure, (a) Show that the area of such a ring is very nearly 2 πrdr . (b) If the disk carries surface charge density σ use the result of part (a) to write an expression for the charge d on an infinitesimal ring, (c) Use the result of (b) along with the result of Example 20.6 to write the infinitesimal electric field dE of this ring at a point on the disk axis, taken to be the positive x -axis. (d) Integrate over all such rings to show that the net electric field on the axis has magnitude E = 2 π k σ ( 1 − x x 2 + R 2 ) FIGURE 20.35 Problem 73
Figure 20.35 shows a thin, uniformly charged disk of radius R . Imagine the disk divided into rings of varying radii r , as suggested in the figure, (a) Show that the area of such a ring is very nearly 2 πrdr . (b) If the disk carries surface charge density σ use the result of part (a) to write an expression for the charge d on an infinitesimal ring, (c) Use the result of (b) along with the result of Example 20.6 to write the infinitesimal electric field dE of this ring at a point on the disk axis, taken to be the positive x -axis. (d) Integrate over all such rings to show that the net electric field on the axis has magnitude E = 2 π k σ ( 1 − x x 2 + R 2 ) FIGURE 20.35 Problem 73
Figure 20.35 shows a thin, uniformly charged disk of radius R. Imagine the disk divided into rings of varying radii r, as suggested in the figure, (a) Show that the area of such a ring is very nearly 2πrdr. (b) If the disk carries surface charge density σ use the result of part (a) to write an expression for the charge d on an infinitesimal ring, (c) Use the result of (b) along with the result of Example 20.6 to write the infinitesimal electric field dE of this ring at a point on the disk axis, taken to be the positive x-axis. (d) Integrate over all such rings to show that the net electric field on the axis has magnitude
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
19:39 ·
C
Chegg
1 69%
✓
The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take
F=1700 lb. (Figure 1)
Figure
800 lb
||-5-
F
600 lb
بتا
D
E
C
BO
10 ft 5 ft 4 ft-—— 6 ft — 5 ft-
Solved Part A The compound
beam is fixed at E and...
Hình ảnh có thể có bản quyền. Tìm hiểu thêm
Problem
A-12
% Chia sẻ
kip
800 lb
Truy cập )
D Lưu
of
C
600 lb
|-sa+ 10ft 5ft 4ft6ft
D
E
5 ft-
Trying
Cheaa
Những kết quả này có
hữu ích không?
There are pins at C and D To F-1200 Egue!)
Chegg
Solved The compound b...
Có Không ☑
|||
Chegg
10
וח
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.