Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 6PCE
A parallel-plate capacitor has plates separated by 0.95 mm. If the electric field between the plates has a magnitude of (a) 1.2 × 105 V/m or (b) 2.4 × 104 N/C, what is the potential difference between the plates?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
Physics (5th Edition)
Ch. 20.1 - The electric potential in system A changes...Ch. 20.2 - Particle A accelerates from rest through a...Ch. 20.3 - The following systems consist or a point charge at...Ch. 20.4 - Figure 20-14 shows a series of equipotential...Ch. 20.5 - Two parallel-plate capacitors are identical,...Ch. 20.6 - The following systems consist of a capacitor for...Ch. 20 - In one region of space the electric potential has...Ch. 20 - If the electric field is zero in some region of...Ch. 20 - Sketch the equipotential surface that goes through...Ch. 20 - How much work is required to move a charge from...
Ch. 20 - It is known that the electric potential is...Ch. 20 - Explain why equipotentials are always...Ch. 20 - Two charges are at locations that have the same...Ch. 20 - A capacitor is connected to a battery and fully...Ch. 20 - On which of the following quantities does the...Ch. 20 - We say that a capacitor stores charge, yet the...Ch. 20 - An electron is released from rest in a region of...Ch. 20 - A uniform electric field of magnitude 3.8 105 N/C...Ch. 20 - A uniform electric field of magnitude 6.8 105 N/C...Ch. 20 - BIO Electric Potential Across a Cell Membrane In a...Ch. 20 - An old-fashioned computer monitor accelerates...Ch. 20 - A parallel-plate capacitor has plates separated by...Ch. 20 - When an ion accelerates through a potential...Ch. 20 - The Electric Potential of the Earth The Earth has...Ch. 20 - A uniform electric field with a magnitude of 6860...Ch. 20 - Predict/Calculate A spark plug in a car has...Ch. 20 - A uniform electric field with a magnitude of 1200...Ch. 20 - A Charged Battery A typical 12-V car battery can...Ch. 20 - BIO Predict/Calculate The Sodium Pump Living cells...Ch. 20 - Predict/Calculate The electric potential of a...Ch. 20 - Points A and B have electric potentials of 332 V...Ch. 20 - Predict/Explain An electron is released from rest...Ch. 20 - Calculate the speed of (a) a proton and (b) an...Ch. 20 - Ion Thrusters NASAs Deep Space 1 and Dawn...Ch. 20 - Find the potential difference required to...Ch. 20 - Predict/Calculate A particle with a mass of 3.8 g...Ch. 20 - Conduction Electrons In the microscopic view of...Ch. 20 - A proton has an initial speed of 5.5 105 m/s. (a)...Ch. 20 - In Figure 20-29, q1 = +1.8 nC and q2 = 2.1 nC, and...Ch. 20 - In Figure 20-29, it is given that, q1 = +Q. (a)...Ch. 20 - CE The charge q1 in Figure 20-29 has the value +Q....Ch. 20 - CE It is given that the electric potential is zero...Ch. 20 - The electric potential 1.6 m from a point charge q...Ch. 20 - A point charge of 9.2 C is at the origin. What is...Ch. 20 - The Bohr Atom The hydrogen atom consists of one...Ch. 20 - How far must the point charges q1 = +6.22 C and q2...Ch. 20 - Four different arrangements of point charges are...Ch. 20 - Predict/Calculate Point charges +4.1 C and 2.2C...Ch. 20 - In Figure 20-31, the charge q = 4.11 10-9C. (a)...Ch. 20 - Predict/Calculate In Figure 20-31, the charge q =...Ch. 20 - A charge of 4.07C is held fixed at the origin. A...Ch. 20 - Predict/Calculate A charge of 20.2 C is held fixed...Ch. 20 - A charge of 2.505 C is located at (3.055 m, 4.501...Ch. 20 - Predict/Calculate Figure 20-32 shows three charges...Ch. 20 - How much work must be done to move the three...Ch. 20 - (a) Find the electric potential at point P in...Ch. 20 - A square of side a has a charge +Q at each corner....Ch. 20 - A square of side a has charges +Q and Q...Ch. 20 - Predict/Explain (a) is the electric potential at...Ch. 20 - Predict/Explain Imagine sketching a large number...Ch. 20 - Two point charges are on the x axis. Charge 1 is...Ch. 20 - Figure 20-35 shows a series of equipotentials in a...Ch. 20 - Predict/Calculate Consider a region in space where...Ch. 20 - A given system has the equipotential surfaces...Ch. 20 - A given system has the equipotential surfaces...Ch. 20 - A 0.75-F capacitor is connected to a 9.0-V...Ch. 20 - It is desired that 7.7 C of charge be stored on...Ch. 20 - To operate a given flash lamp requires a charge of...Ch. 20 - Planet Capacitor It can be shown that the...Ch. 20 - A parallel-plate capacitor is made from two...Ch. 20 - A parallel-plate capacitor is constructed with...Ch. 20 - Predict/Calculate A parallel-plate capacitor has...Ch. 20 - Predict/Calculate A 72-nF parallel-plate capacitor...Ch. 20 - Predict/Calculate Consider a parallel-plate...Ch. 20 - A parallel-plate capacitor has plates of area 3.75...Ch. 20 - Predict/Calculate A parallel-plate capacitor...Ch. 20 - Suppose that after walking across a carpeted floor...Ch. 20 - (a) What plate area is required for an air-filled,...Ch. 20 - Lightning As a crude model for lightning, consider...Ch. 20 - A parallel-plate capacitor is made from two...Ch. 20 - Calculate the work done by a 9.0-V battery as it...Ch. 20 - BIO Defibrillator An automatic external...Ch. 20 - BIOPredict/Calculate Cell Membranes The membrane...Ch. 20 - A capacitor with plate area 0.0440 m2 and plate...Ch. 20 - Find the electric energy density between the...Ch. 20 - What electric field strength would store 17.5 J of...Ch. 20 - An electronic flash unit for a camera contains a...Ch. 20 - A parallel-plate capacitor has plates with an area...Ch. 20 - CE Predict/Explain A proton is released from rest...Ch. 20 - CE The plates of a parallel-plate capacitor have...Ch. 20 - CE A parallel-plate capacitor is connected to a...Ch. 20 - CE The plates of a parallel-plate capacitor have...Ch. 20 - CE A parallel-plate capacitor is connected to a...Ch. 20 - Find the difference in electric potential, V = VB ...Ch. 20 - A 0.32-F capacitor is charged by a 1.5-V battery....Ch. 20 - A charge of 22.5 C is located at (4.40 m, 6.22 m),...Ch. 20 - The Bohr Model In the Bohr model of the hydrogen...Ch. 20 - Predict/Calculate A +1.2-C charge and a 1.2-C...Ch. 20 - How much work is required to bring three protons,...Ch. 20 - A point charge Q = +87.1 C is held fixed at the...Ch. 20 - Electron Escape Speed An electron is at rest just...Ch. 20 - Quark Model of the Neutron According to the quark...Ch. 20 - A parallel-plate capacitor is charged to an...Ch. 20 - Predict/Calculate The three charges shown in...Ch. 20 - (a) In Figure 20-36 we see that the electric...Ch. 20 - BIO Predict/Calculate Electric Catfish The...Ch. 20 - Regenerative Braking Many electric cars can...Ch. 20 - Predict/Calculate Computer Keyboards Many computer...Ch. 20 - Predict/Calculate A point charge of mass 0.081 kg...Ch. 20 - BIO Cell Membranes and Dielectrics Many cells in...Ch. 20 - BIO Mitochondrial Membrane Every cell in the body...Ch. 20 - Long, long ago, on a planet far, far away, a...Ch. 20 - Rutherfords Planetary Model of the Atom In 1911,...Ch. 20 - Predict/Calculate (a) One of the Q charges in...Ch. 20 - Figure 20-38 shows a charge q = +6.77 C with a...Ch. 20 - The electric potential a distance r from a point...Ch. 20 - When the potential difference between the plates...Ch. 20 - The electric potential a distance r from a point...Ch. 20 - BIO The Electric Eel Of the many unique and...Ch. 20 - As a rough approximation, consider an electric eel...Ch. 20 - In terms of the parallel-plate model of the...Ch. 20 - How much energy is stored by an electric eel when...Ch. 20 - Predict/Calculate Referring to Example 20-9...Ch. 20 - Referring to Example 20-9 Suppose we can change...Ch. 20 - Predict/Calculate Referring to Example 20-9...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Is the brightness of each bulb in the two-bulb parallel circuit greater than, less than, or equal to that of a ...
Tutorials in Introductory Physics
Give the metric prefix for each value.
1. 1000
Applied Physics (11th Edition)
Ceiling fans are sometimes reversible, so that they drive the air down in one season and pull it up in another ...
Physics for Scientists and Engineers with Modern Physics
Two parallel conducting plates, each of cross-sectional area 400 cm2, are 2.0 cm apart and uncharged. If 1.0101...
University Physics Volume 2
What did Einstein mean by his re maxi, loosely paraphrased, that God does not play dice?
Essential University Physics (3rd Edition)
The metal that has the greater change in thermal energy.
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Air breaks down and conducts charge as a spark if the electric field magnitude exceeds 3.00 106 V/m. (a) Determine the maximum charge Qmax that can be stored on an air-filled parallel-plate capacitor with a plate area of 2.00 104 m2. (b) A 75.0 F air-filled parallel-plate capacitor stores charge Qmax. Find the potential difference across its plates.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forward
- FIGURE P26.14 Problems 14, 15, and 16. Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite?arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forwardThe electric field strength between two parallel conducting plates separated by 4.00 cm is 7.50104 V/m. (a) What is the potential difference between the plates? (b) The plate with the lowest potential is taken to be zero volts. What is the potential 1.00 cm from that plate and 3.00 cm from the other?arrow_forward
- The dielectric to be used in a parallel-plate capacitor has a dielectric constant of 3.60 and a dielectric strength of 1.60107 V/m. The capacitor has to have a capacitance of 1.25 nF and must be able to withstand a maximum potential difference 5.5 kV. What is the minimum area the plates of the capacitor may have?arrow_forwardAn electronics technician wishes to construct a parallel plate capacitor using rutile ( = 100) as the dielectric. The area of the plates is 1.00 cm2. What is the capacitance if the rutile thickness is 1.00 mm? (a) 88.5 pF (b) 177 pF (c) 8.85 F (d) 100 F (e) 35.4 Farrow_forward(a) Calculate the electric potential 0.250 cm from ail electron, (b) What is the electric potential difference between two points that are 0.250 cm and 0.750 cm from an electron? (c) How would the answers change if the electron were replaced with a proton?arrow_forward
- (a) Find the electric potential difference Ve required to stop an electron (called a stopping potential) moving with an initial speed of 2.85 107 m/s. (b) Would a proton traveling at the same speed require a greater or lesser magnitude of electric potential difference? Explain. (c) Find a symbolic expression for the ratio of the proton stopping potential and the electron stopping potential. Vp/Ve.arrow_forwardWhen a potential difference of 150. V is applied to the plates of an air-filled parallel-plate capacitor, the plates carry a surface charge density of 3.00 1010 C/cm2. What is the spacing between the plates?arrow_forwardFigure P24.22 represents a graph of the electric potential in a region of space versus position x, where the electric field is parallel to the x axis. Draw a graph of the x component of the electric field versus x in this region. Figure P24.22arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY