Air (a diatomic ideal gas) at 27.0°C and atmospheric pressure is drawn into a bicycle pump that has a cylinder with an inner diameter of 2.50 cm and length 50.0 cm. The downstroke adiabatically compresses the air, which readies a gauge pressure of 8.00 × 105 Pa before entering the tire. We wish to investigate the temperature increase of the pump. (a) What is the initial volume of the air in the pump? (b) What is the number of moles of air in the pump? (c) What is the absolute pressure of the compressed air? (d) What is the volume of the compressed air? (c) What is the temperature of the compressed air? (f) What is the increase in internal energy of the gas during the compression? What If? The pump is made of steel that is 2.00 mm thick. Assume 4.00 cm of the cylinder’s length is allowed to come to thermal equilibrium with the air. (g) What is the volume of steel in this 4.00-cm length? (h) What is the mass of steel in this 4.00-cm length? (i) Assume the pump is compressed once. After the adiabatic expansion,
(a)
The initial volume of the air in the pump.
Answer to Problem 21P
The initial volume of the air in the pump is
Explanation of Solution
Given information:Initial temperature for diatomic gasis
Write the expression to calculate the radius of the pump.
Here,
Formula to calculate the initial volume of the air in the pump.
Here,
Substitute
Substitute
Thus, the initial volume of the air in the pump is
Conclusion:
Therefore, the initial volume of the air in the pump is
(b)
The number of moles of air in the pump.
Answer to Problem 21P
The number of moles of air in the pump is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the number of moles of air in the pump.
Here,
The value of atmospheric pressure for diatomic gas is
Substitute
Thus, the number of moles of air in the pump is
Conclusion:
Therefore, the number of moles of air in the pump is
(c)
The absolute pressure of the compressed air.
Answer to Problem 21P
The absolute pressure of the compressed air is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the absolute pressure of the compressed air.
Here,
Substitute
Thus, the absolute pressure of the compressed air is
Conclusion:
Therefore, the absolute pressure of the compressed air is
(d)
The volume of the compressed air.
Answer to Problem 21P
The volume of the compressed air is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Write the expression for the adiabatic compression.
Here,
Formula to calculate the volume of the compressed air.
Substitute
Thus, the volume of the compressed air is
Conclusion:
Therefore, the volume of the compressed air is
(e)
The temperature of the compressed air.
Answer to Problem 21P
The temperature of the compressed air is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the temperature of the compressed air.
Here,
Substitute
Thus, the temperature of the compressed air is
Conclusion:
Therefore, the temperature of the compressed air is
(f)
The increase in internal energy of the gas during the compression.
Answer to Problem 21P
The increase in internal energy of the gas during the compression is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
For adiabatic process, the work done on the gas is equal to the change in internal energyof the gas during the compression.
Here,
Write the expression for the change in internal energyof the gas during the compression.
Here,
Write the expression for specific heat at constant volume.
Here,
Equate the three expressions (7),(8) and (9)and re-arrange to get
Formula to calculate the change in temperature of a monatomic ideal gas.
Here,
Substitute
Thus, the change in temperature of a monatomic ideal gas is
Substitute
Thus, the increase in internal energy of the gas during the compression is
Conclusion:
Therefore, the increase in internal energy of the gas during the compression is
(g)
The volume of the steel in this
Answer to Problem 21P
The volume of the steel in this
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the volume of the steel in this
Here,
Write the expression to calculate the square radius of the pump for steel.
Here,
Formula to calculate the outer radius of the pump.
Here,
Substitute
Thus, the outer radius of the pump is
Substitute
Thus, the square radius of the pump for steel is
Substitute
Thus, the volume of the steel in this
Conclusion:
Therefore, the volume of the steel in this
(h)
The mass of the steel in this
Answer to Problem 21P
The mass of the steel in this
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the mass of the steel in this
Here,
The value of density of the steel is
Substitute
Thus, the mass of the steel in this
Conclusion:
Therefore, the mass of the steel in this
(i)
The increase in temperature of the steel after one compression.
Answer to Problem 21P
The increase in temperature of the steel after one compression is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
After the adiabatic compression, conduction in the part (f) being shared between the gas and the
The work done on the gas is equal to the sum of change in internal energyof the gas during the compression and the heat supplied.
Here,
Write the expression for the heat supplied during the compression.
Here,
The value of specific heat capacity is
Equate the three expressions (8),(9),(16) and (17)and re-arrange to get
Substitute
Thus, the increase in temperature of the steel after one compression is
Conclusion:
Therefore, the increase in temperature of the steel after one compression is
Want to see more full solutions like this?
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics
- A piece of silicon semiconductor has length L=0.01cm and cross-section in a square shape with an area of A=5×10−4cm2 . The semiconductor is doped with 1012cm−3 Phosphorus atoms and 1017cm−3 Boron atoms. An external electric field E=1.5×104N/C is applied to the silicon piece along the length direction, through the cross section. What is the total current in the silicon at T=300K? Assume the mobility of silicon is 1400cm2V−1s−1 for electrons and 450cm2V−1s−1 for holes, respectively. Assume the intrinsic carrier concentration in silicon is 1010cm−3 . Give your answer in mA, rounded to 3 significant figures. Just enter the number, nothing else.arrow_forwardAn impurity with a charge of 2e is placed in a three-dimensional metal. Assume that the Friedel sum rule holds for this system, and only the scattering phase shifts from the electrons contribute to this sum (we don't need to consider ion phase shifts). This metal has a spherical Fermi surface with Fermi wave vector kF . The only degeneracy for the electrons at the Fermi surface is spin (two-fold) and angular momentum ( 2l+1 for each angular momentum l ). Ignore scattering for l>2 and assume that the scattering doesn't depend on the spin degree of freedom. Denote the scattering phase shift at the Fermi wave vector in the l -th angular momentum channel as δl(kF) . If δ0(kF)=11π31 , and δ1(kF)=π29 , what is δ2(kF)? Round your answer to three significant figures. Just enter the number, nothing else.arrow_forwardA pilot with a mass of 75 kg is flying an airplane at a true airspeed of 55m/s in air that is still relative to the ground. The pilot enters a coordinated turn of constant bank angle and constant altitude, and the pilot experiences an effective weight of 1471.5N normal to the wings of the plane. What is the rate of turn (in degrees per second) for the aircraft? Round your answer to three significant figures. Just enter the number, nothing else.arrow_forward
- Imagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.arrow_forwardRed, yellow, green, and blue light with wavelengths of λred=700 nm , λyellow=580 nm , λgreen=520 nm , and λblue=475 nm are directed at a slit that is 20 μm wide at normal incidence. The light hits a screen 1 m behind the slit. Which color of light will have an interference minimum closest to a point 10 cm away from its central maxima? You may assume the small angle approximation sinθ≈tanθ≈θ for angles smaller than 10∘ . Just enter the wavelength of that color in nm, nothing else.arrow_forwardIn the circuit shown, the switch is initially open and the capacitor isuncharged. What will be the current through R1 the instant after the switch isclosed? Take V=10 V, R1 = 20 W, R2 = 20 W, R3 = 10 W and C = 2 mF.arrow_forward
- In the circuit shown take: V1 = 20V, V2 = 40V, R1 = 5W, R2 = 2W and R3 =10W. If i1 = 2A, what is i3 if the assumed direction of the current is as shown.arrow_forwardConsider the circuit shown in the figure below. (Let R = 12.0 (2.) 25.0 V 10.0 www 10.0 Ω b www 5.00 Ω w R 5.00 Ω i (a) Find the current in the 12.0-0 resistor. 1.95 × This is the total current through the battery. Does all of this go through R? A (b) Find the potential difference between points a and b. 1.72 × How does the potential difference between points a and b relate to the current through resistor R? Varrow_forward3.90 ... CP A rocket designed to place small payloads into orbit is carried to an altitude of 12.0 km above sea level by a converted airliner. When the airliner is flying in a straight line at a constant speed of 850 km/h, the rocket is dropped. After the drop, the air- liner maintains the same altitude and speed and continues to fly in a straight line. The rocket falls for a brief time, after which its rocket motor turns on. Once its rocket motor is on, the combined effects of thrust and gravity give the rocket a constant acceleration of magnitude 3.00g directed at an angle of 30.0° above the hori- zontal. For reasons of safety, the rocket should be at least 1.00 km in front of the airliner when it climbs through the airliner's alti- tude. Your job is to determine the minimum time that the rocket must fall before its engine starts. You can ignore air resistance. Your answer should include (i) a diagram showing the flight paths of both the rocket and the airliner, labeled at several…arrow_forward
- 1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°. Outside the pipe the temperature is fixed at Tout = 15 °C. If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature of the fluid at the end of the pipe? (Answer: 83 °C) please I need to show All work problems step by steparrow_forwardIn an isothermal process, you are told that heat is being added to the system. Which of the following is not true? (a) The pressure of the gas is decreasing. (b) Work is being done on the system. (c) The average kinetic energy of the particles is remaining constant. (d) The volume of the gas is increasing. (e) Work is being done by the system.arrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning