College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 58GP
Does a real automobile have constant acceleration? Measured data for a Porsche 944 Turbo at maximum acceleration are as shown in the table.
t(s) | Vx(mph) |
0 | 0 |
2 | 28 |
4 | 46 |
6 | 60 |
8 | 70 |
10 | 78 |
a. Convert the velocities to m/s, then make a graph of velocity versus time. Based on your graph, is the acceleration constant? Explain.
b. Draw a smooth curve through the points on your graph, then use your graph to estimate the car's acceleration at 2.0 sand 8.0 s. Give your answer in SI units. Hint:
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule05:54
Students have asked these similar questions
Does a real automobile have constant acceleration? Measured data for aPorsche 944 Turbo at maximum acceleration are as shown in the table.a. Convert the velocities to m/s, then make a graph of velocity versus time.Based on your graph, is the acceleration constant? Explain.b. Estimate how far the car traveled in the first 10 s.c. Draw a smooth curve through the points on your graph, then use your graph to estimate the car’s acceleration at 2.0 s and 8.0 s. Give your answer in SI units. Hint: Remember that acceleration is the slope of the velocity graph.
Help
The acceleration of an object increases linearly from 4 fps? to 12 fps? in 9 seconds. By the end of 9
seconds, the velocity is 48 fps. NOTE: At the start, the object is at the zero-reference point of
displacement.
a. Draw the a-t graph. Find the equation of the acceleration as the function of time.
b. Draw the v-t graph. Find the equation of the velocity as the function of time.
C. Draw the s-t graph. Find the equation of the displacement as the function of time.
Chapter 2 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 2 - A person gets in an elevator on the ground floor...Ch. 2 - a. Give an example of a vertical motion with a...Ch. 2 - Figure Q2.3 shows growth rings in the trunk of a...Ch. 2 - Sketch a velocity-versus-time graph for a rock...Ch. 2 - You are driving down the road at a constant speed....Ch. 2 - A car is traveling north. Can its acceleration...Ch. 2 - A ball is thrown straight up into the air. At each...Ch. 2 - A rock is thrown (not dropped) straight down from...Ch. 2 - Figure Q2.10 shows an object's...Ch. 2 - Figure Q2.11 shows the position graph for an...
Ch. 2 - Figure Q2.12 shows the position-versus-time graphs...Ch. 2 - Figure Q2.13 shows a position-versus-time graph....Ch. 2 - Figure Q2.14 is the velocity-versus-time graph for...Ch. 2 - Figure Q2.15 shows the position graph of a car...Ch. 2 - Figure Q2.16 shows the position graph of a car...Ch. 2 - Figure Q2.17 shows an object's...Ch. 2 - The following options describe the motion of four...Ch. 2 - A car is traveling at Vx = 20 m/s. The driver...Ch. 2 - Velocity-versus-time graphs for three drag racers...Ch. 2 - Which of the three drag racers in Question 20 had...Ch. 2 - Chris is holding two softballs while standing on a...Ch. 2 - Suppose a plane accelerates from rest for 30 s,...Ch. 2 - Figure Q2.24 shows a motion diagram with the clock...Ch. 2 - A car can go from 0 to 60 mph in 7.0 s. Assuming...Ch. 2 - A car can go from 0 to 60 mph in 12 s. A second...Ch. 2 - Figure P2.1 shows a motion diagram of a car...Ch. 2 - For each motion diagram in Figure P2.2, determine...Ch. 2 - The position graph of Figure P2.3 shows a dog...Ch. 2 - A rural mail carrier is driving slowly, putting...Ch. 2 - For the velocity-versus-time graph of Figure P2.5:...Ch. 2 - A bicyclist has the position-versus-time graph...Ch. 2 - In major league baseball, the pitcher's mound is...Ch. 2 - In college softball, the distance from the...Ch. 2 - Alan leaves Los Angeles at 8:00am to drive to San...Ch. 2 - Richard is driving home to visit his parents. 125...Ch. 2 - In a 5.00 km race, one runner runs at a steady...Ch. 2 - In an 8.00 km race, one runner runs at a steady...Ch. 2 - A car moves with constant velocity along a...Ch. 2 - While running a marathon, a long-distance runner...Ch. 2 - Figure P2.1 shows the position graph of a...Ch. 2 - A somewhat idealized graph of the speed of the...Ch. 2 - A car starts from Xi = 10 m at ti = 0 s and moves...Ch. 2 - Figure P2.18 shows a graph of actual...Ch. 2 - Figure P2.19 shows the velocity graph of a...Ch. 2 - We set the origin of a coordinate system so that...Ch. 2 - For each motion diagram shown earlier in Figure...Ch. 2 - Figure P2.16 showed data for the speed of blood in...Ch. 2 - Figure P2.23 is a somewhat simplified velocity...Ch. 2 - Small frogs that are good jumpers are capable of...Ch. 2 - A Thomson's gazelle can reach a speed of 13 m/s in...Ch. 2 - When striking, the pike, a predatory fish, can...Ch. 2 - a. What constant acceleration, in SI units, must a...Ch. 2 - When jumping, a flea rapidly extends its legs,...Ch. 2 - A car traveling at speed v takes distance d to...Ch. 2 - Light-rail passenger trains that provide...Ch. 2 - A cross-country skier is skiing along at a zippy...Ch. 2 - A small propeller airplane can comfortably achieve...Ch. 2 - Formula One racers speed up much more quickly than...Ch. 2 - Figure P2.34 shows a velocity-versus-time graph...Ch. 2 - A driver has a reaction time of 0.50 s, and the...Ch. 2 - Chameleons catch insects with their tongues, which...Ch. 2 - You're driving down the highway late one night at...Ch. 2 - A light-rail train going from one station to the...Ch. 2 - A car is traveling at a steady 80 km/h in a 50...Ch. 2 - When a jet lands on an aircraft carrier, a hook on...Ch. 2 - A simple model for a person running the 100m dash...Ch. 2 - Ball bearings can be made by letting spherical...Ch. 2 - Here's an interesting challenge you can give to a...Ch. 2 - In the preceding problem we saw that a person's...Ch. 2 - A gannet is a seabird that fishes by diving from a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - Excellent human jumpers can leap straight up to a...Ch. 2 - A football is kicked straight up into the air; it...Ch. 2 - In an action movie, the villain is rescued from...Ch. 2 - Spud Webb was, at 5 ft 8 in, one of the shortest...Ch. 2 - A rock climber stands on top of a 50-m-high cliff...Ch. 2 - Actual velocity data for a lion pursuing prey are...Ch. 2 - A truck driver has a shipment of apples to deliver...Ch. 2 - When you sneeze, the air in your lungs accelerates...Ch. 2 - Figure P2.55 shows the motion diagram, made at two...Ch. 2 - Julie drives 100 mi to Grandmother's house. On the...Ch. 2 - The takeoff speed for an Airbus A320 jetliner is...Ch. 2 - Does a real automobile have constant acceleration?...Ch. 2 - People hoping to travel to other worlds are faced...Ch. 2 - You are driving to the grocery store at 20 m/s....Ch. 2 - When you blink your eye, the upper lid goes from...Ch. 2 - A bush baby, an African primate, is capable of a...Ch. 2 - When jumping, a flea reaches a takeoff speed of...Ch. 2 - Certain insects can achieve seemingly impossible...Ch. 2 - A student standing on the ground throws a ball...Ch. 2 - A rock is tossed straight up with a speed of 20...Ch. 2 - A 200 kg weather rocket is loaded with 100 kg of...Ch. 2 - A hotel elevator ascends 200m with a maximum speed...Ch. 2 - A car starts from rest at a stop sign. It...Ch. 2 - A toy train is pushed forward and released at xi =...Ch. 2 - Heather and Jerry are standing on a bridge 50 m...Ch. 2 - A Thomson's gazelle can run at very high speeds,...Ch. 2 - We've seen that a man's higher initial...Ch. 2 - A pole-vaulter is nearly motionless as he clears...Ch. 2 - A Porsche challenges a Honda to a 400 m race....Ch. 2 - The minimum stopping distance for a car traveling...Ch. 2 - A rocket is launched straight up with constant...Ch. 2 - Free Fall on Different Worlds Objects in free fall...Ch. 2 - Free Fall on Different Worlds Objects in free fall...Ch. 2 - Free Fall on Different Worlds Objects in free fall...
Additional Science Textbook Solutions
Find more solutions based on key concepts
56. Advertisements for a certain small car claim that it floats in water. (a) If the car’s mass is 900 kg and i...
College Physics (10th Edition)
Although the maximum current flows in the speaker circuit of Example 28.4 at the 1-kHz resonant frequency, the ...
Essential University Physics: Volume 2 (3rd Edition)
Use Newton's second law and the definition of acceleration to derive an equation for each cart relating the net...
Tutorials in Introductory Physics
Your intercontinental telephone call is carried by electromagnetic waves routed via a satellite in geostationar...
Essential University Physics (3rd Edition)
The average angular acceleration of a fan blade rotates for t=0 to t=2 s.
Physics (5th Edition)
9.90 CALC Calculate the moment of inertia of a uniform solid cone about an axis through its center (Fig. P9.90)...
University Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cyclist rides 8.0 km east for 20 minutes, then he turns and heads west for 8 minutes and 3.2 km. Finally, he rides east for 16 km, which takes 40 minutes. (a) What is the final displacement of the cyclist? (b) What is his average velocity?arrow_forward(a) A light-rail commuter train accelerates at a rate of 1.35m/s2 . How long does it take to reach its top speed of 80.0 km/h, starting from rest? (b) The same train ordinarily decelerates at a rate of 1.65m/s2 . How long does it take to came to a stop from its top speed? (c) In emergencies, the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30 s. What is its emergency acceleration in meters per second sqquared?arrow_forwardLet's say you ride your bike from your house to your friend's house. To get there uou have to go 4.00 miles south, 8.00 miles west, then 6.00 miles north. This trip takes 32.5 minutes.a. What is your average speed for the trip in miles per minute? b. What is your average velocity for the trip in miles per minute?arrow_forward
- A. Answer the following questions correctly. 1. Can a displacement from one point to another be zero, yet the distance involved in moving these points be non-zero? Can the distance between two points be zero, yet the displacement from one point to the other be non-zero? Explain. Can the velocity of an object be in different direction than the acceleration? Give example. Explain how a body moves with (a) uniform motion, and (b) uniformly accelerated motion. Is it possible for a body to accelerate when its velocity is constant? Explain. 4. 5. If an object has a greater speed, does it necessarily have a greater acceleration? Explain using examples. 2. 3.arrow_forwardYou are traveling on an interstate highway at the posted speed limit of 70 mph when you see that the traffic in front of you has stopped due to an accident up ahead. You step on your brakes to slow down as quickly as possible. Assume that you to slow down to 30 mph in about 5 seconds. a. What is the magnitude of the average acceleration of the car while it is slowing down? Express your answer in feet per second squared. b. With this same average acceleration, how much longer would it take you to stop? c. What total distance would you travel from when you first apply the brakes until the car stops? Express your answer in feet.arrow_forwardA man walks 7km north in 2 houra and 2km in 1 hour in the same direction. a. What is the man's average speed for the whole journey? b. What is the man's average velocity for the whole journey?arrow_forward
- Coasting due West on your bicycle at 9.6 m/s, you encounter a sandy patch of road 6.7m across. When you leave the sandy patch your speed has been reduced by 3.8m/s to 5.8 m/s. a. Assuming the sand causes a constant acceleration, what was the bicycle’s acceleration in the sandy patch? Give both the magnitude and direction. b. How long did it take to cross the sandy patch? c. Suppose you enter the sandy patch with a speed of only 7.6 m/s. Is your final speed in this case 3.4m/s, more than 3.4m/s, or less than 3.4 m/s? Explain.arrow_forwarda.) Draw the distance vs. time graph. Find the slope. b.) Describe the graph line. What does it imply? a.) Draw the speed vs. time graph. Find the slope. Describe the graph line. What does it imply? b.) Find the slope of the graph and compare it with the calculated acceleration. Describe the motion of a freely falling body based on the results obtained. If, by some suitable mechanism, the falling body had been given an initial downward push instead of being just released, would the resulting value of `g’ have been different? Explain. Problems: An object is dropped from rest at a height of 300 m.a. Find the velocity after 2 seconds.b. Find the time it takes for the object to reach the ground. c. With what velocity does it hit the ground? A car starting from rest is accelerated 15 m/s2. In how many seconds will its velocity be equal to 100 m/s? How far will it have traveled during this same time?arrow_forward.A ball is rolled up a ramp with an initial speed of five meters per second up the ramp,from an initial position three meters from the bottom of the ramp.It experiences a constant acceleration down the ramp of two meters per second squared. a. What is the peak distance up the ramp that the ball will reach?Hint: First solve for time using one of the kinematic equations… b. How fast will the ball be moving as it reaches the ground?arrow_forward
- The position (in meters) of an object is given as a function of time by the equation: x(t) = 2t^3 - 3t^2 +t-6 a.What is the initial position of the object (that is, at t=0) and What is the position after 3 seconds? b.What is the average velocity of this object over the first 3 seconds? and Write an equation for the instantaneous velocity of this object c.What is the initial velocity of this object (that is, at t=0) and What is the velocity of this object at 3 seconds? Also find the average acceleration for this object over the first three seconds? Please answer it completetely.arrow_forwardFull formula Correct Correct Correct values answer, metric units inserted into rounded to the formula two decimal from the places word problemarrow_forwardStarting at 48th Street, Dylan rides his bike due east on Meridian Road with the wind at his back. He rides for 20 min at 15 mph. He then stops for 5 min, turns around, and rides back to 48th Street; because of the headwind, his speed is only 10 mph.a. How long does his trip take?b. Assuming that the origin of his trip is at 48th Street, draw a position-versus-time graph for his trip.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY