Introduction to General, Organic and Biochemistry
Introduction to General, Organic and Biochemistry
11th Edition
ISBN: 9781285869759
Author: Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher: Cengage Learning
Question
Book Icon
Chapter 2, Problem 2.75P
Interpretation Introduction

(a)

Interpretation:

Which is more likely to conduct electricity and heat: metal or non-metal should be identified.

Concept Introduction:

Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.

Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.

On the other hand, metalloids have some of the properties of metal and some of the non-metals.

Interpretation Introduction

(b)

Interpretation:

Which is more likely to accept electrons: metal or non-metal is to be stated.

Concept Introduction:

Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.

Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.

On the other hand, metalloids have some of the properties of metal and some of the non-metals.

Interpretation Introduction

(c)

Interpretation:

Which is more likely to be malleable in metal and non-metal is to be stated.

Concept Introduction:

Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.

Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.

On the other hand, metalloids have some of the properties of metal and some of the non-metals.

Interpretation Introduction

(d)

Interpretation:

Which is more likely to be gas at room temperature in metal and non-metal is to be stated.

Concept Introduction:

Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.

Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.

On the other hand, metalloids have some of the properties of metal and some of the non-metals.

Interpretation Introduction

(e)

Interpretation:

Which is more likely to be a transition element in metal and non-metal is to be stated.

Concept Introduction:

Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.

Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.

On the other hand, metalloids have some of the properties of metal and some of the non-metals.

Interpretation Introduction

(f)

Interpretation:

Which is more likely to lose electrons in metal and non-metal is to be stated.

Concept Introduction:

Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.

Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.

On the other hand, metalloids have some of the properties of metal and some of the non-metals.

Blurred answer
Students have asked these similar questions
1. Using the various group classifications from the periodic table, assign all appropriate labels to each of the following elements. Each element will have multiple (2 or more) answers. (a) Silver (b) Tennessine (c) Samarium (d) Antimony 2. Calculate the numbers of each type of nucleon and the number of electrons in each of the following species. (a) neodymium-149 (b) tantalum-179 (c) sellenium-79 dianion (d) krypton-85 trication 3. Write the ground-state electron configuration for the following atoms or ions. Use core notation in your electron configurations at your own discretion. (a) As (b) Au (c) Ce (d) Zn2− (e) Po4+ 4. Write an appropriate set of four quantum numbers (n, l, ms & ms) that could be representative of a valence electron in each of the following atoms or ions. (a) Bi (b) Sr (c) Mo (d) Ru2+ (e) Eu 5. In theory, there are an infinite number of energy levels and atomic orbital types that we can define using the solutions to the Schrödinger…
Answer true or false. (a) For Group 1A and Group 2A elements, the name of the ion each form is simply the name of the element followed by the word ion; for example, Mg21 is named magnesium ion. (b) H2 is named hydride ion. (c) The nucleus of H1 consists of one proton and one neutron. (d) Many transition and inner transition elements form more than one positively charged ion. (e) In naming metal cations with two different charges, the suffix -ous refers to the ion with a charge of 11 and -ic refers to the ion with a charge of 12. (f) Fe31 may be named either iron (III) ion or ferric ion. (g) The anion derived from a bromine atom is named bromine ion. (h) The anion derived from an oxygen atom is named oxide ion. (i) HCO3 2 is named hydrogen carbonate ion. (j) The prefix bi- in the name “bicarbonate” ion indicates that this ion has a charge of 22. (k) The hydrogen phosphate ion has a charge of 11, and the dihydrogen phosphate ion has a charge of 12. (l) The phosphate ion is PO3 42. (m)…
Provide the symbol of the following monatomic ions, given the number of protons and electrons in each. (a) 8 protons, 10 electrons (b) 20 protons, 18 electrons (c) 53 protons, 54 electrons (d) 26 protons,  24 electrons

Chapter 2 Solutions

Introduction to General, Organic and Biochemistry

Ch. 2 - Prob. 2.11PCh. 2 - 2-12 The elements game, Part 1. Name and give the...Ch. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - 2-17 How does Dalton’s atomic theory explain: (a)...Ch. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - 2-20 Calculate the percentage of hydrogen and...Ch. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - 2-23 It has been said, “The number of protons...Ch. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - 2-26 Given these mass numbers and number of...Ch. 2 - 2-27 If each atom in Problem 2-26 acquired two...Ch. 2 - Prob. 2.28PCh. 2 - 2-29 How many protons and how many neutrons does...Ch. 2 - Prob. 2.30PCh. 2 - 2-31 Tin-118 is one of the isotopes of tin. Name...Ch. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - 2-34 There are only two naturally occurring...Ch. 2 - 2-35 The two most abundant naturally occurring...Ch. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - 2-43 Which group(s) of the Periodic Table...Ch. 2 - 2-44 Which period(s) in the Periodic Table...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - 2-47 Which element in each pair is more metallic?...Ch. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - 2-51 What is the correlation between the group...Ch. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - 2-59 You are presented with a Lewis dot structure...Ch. 2 - Prob. 2.60PCh. 2 - Prob. 2.61PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - 2-64 Consider the elements B, C, and N. Using only...Ch. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - 2-67 Account for the fact that the first...Ch. 2 - Prob. 2.68PCh. 2 - 2-69 (Chemical Connections 2A) Why does the body...Ch. 2 - Prob. 2.70PCh. 2 - Prob. 2.71PCh. 2 - Prob. 2.72PCh. 2 - 2-73 (Chemical Connections 2D) Copper is a soft...Ch. 2 - Prob. 2.74PCh. 2 - Prob. 2.75PCh. 2 - Prob. 2.76PCh. 2 - Prob. 2.77PCh. 2 - Prob. 2.78PCh. 2 - Prob. 2.79PCh. 2 - Prob. 2.80PCh. 2 - Prob. 2.81PCh. 2 - Prob. 2.82PCh. 2 - 2-83 The natural abundance of boron isotopes is as...Ch. 2 - Prob. 2.84PCh. 2 - 2-85 The mass of a proton is 1.67 × 10-24g. The...Ch. 2 - Prob. 2.86PCh. 2 - Prob. 2.87PCh. 2 - Prob. 2.88PCh. 2 - 2-89 Assume that a new element has been discovered...Ch. 2 - Prob. 2.90PCh. 2 - 2-91 These are the first two ionization energy for...Ch. 2 - Prob. 2.92PCh. 2 - Prob. 2.93PCh. 2 - 2-94 Using your knowledge of trends in element...Ch. 2 - Prob. 2.95PCh. 2 - Prob. 2.96PCh. 2 - 2-97 Explain why the Ca3+ ion is not found in...Ch. 2 - 2-98 Explain how the ionization energy of atoms...Ch. 2 - 2-99 A 7.12 g sample of magnesium is heated with...Ch. 2 - 2-100 A 0.100 g sample of magnesium, when combined...Ch. 2 - 2-101 Complete the following table: Symbol Atomic...Ch. 2 - 2-102 An element consists of 90.51% of an isotope...Ch. 2 - 2-103 The element silver has two naturally...Ch. 2 - 2-104 The average atomic weight of lithium is...Ch. 2 - Prob. 2.105PCh. 2 - Prob. 2.106P
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning