DESIGN OF MACHINERY
6th Edition
ISBN: 9781260113310
Author: Norton
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.58P
To determine
The mobility of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Figure Q2-2 shows a schematic of a retractable landing gear of aircraft.
The retraction mechanism is a 4 bar linkage (O1ABO2), which is actuated
by a hydraulic cylinder and piston, D, pivoted at E with a joint at C to link
O,A.
Hydraulic cylinder
& piston D
Joint for landing
gear wheel
Figure Q2-2
Use the Gruebler's equation of DoF (Degrees of Freedom) of a
linkage mechanism to assess if the landing gear produces the
required retraction motion. 0,02 may be considered as the ground
link.
i)
Hint: The joint of the wheel is not part of the linkage mechanism.
The number of DoF may be used to check if it is a linkage with
certain motions or a fixed structure.
ii)
The dimensions of the 4 bar linkage (O1ABO2) are measured as
O102 = 800 mm, O1A = 780 mm, AB = 200 mm and O2B = 400
mm. Use Grashof condition to determine the specific type of this
linkage.
You may find the Gruebler's equation useful:
M = 3(L – 1) – 2J
where, M is degree of freedom (DoF)
L is number of links
J is number of joints
solve, show all steps. fundamentals of machiene design. list length, angle, and what type of four-bar mechanism
Crank Rocker mechanism, Link 1= 177.8 mm; Link 2 = 228.6 mm; Link 3 = 76.2 mm and
Link 4 = 203.2 mm. If the angular position of Link 2 is 85.22°
find the possible angular positions of Link 3 and Link 4 using graphical method.
Chapter 2 Solutions
DESIGN OF MACHINERY
Ch. 2 - Find three (or other number as assigned) of the...Ch. 2 - How many DOF do you have in your wrist and hand...Ch. 2 - How many DOF do the following joints have? Your...Ch. 2 - How many DOF do the following have in their normal...Ch. 2 - Are the joints in Problem 2-3 force closed or form...Ch. 2 - Describe the motion of the following items as pure...Ch. 2 - Calculate the mobility of the linkages assigned...Ch. 2 - Identify the items in Figure P2-1 as mechanisms,...Ch. 2 - Use linkage transformation on the linkage of...Ch. 2 - Prob. 2.10P
Ch. 2 - Use number synthesis to find all the possible link...Ch. 2 - Prob. 2.12PCh. 2 - Use linkage transformation to create a 1-DOF...Ch. 2 - Use linkage transformation to create a 1-DOF...Ch. 2 - Calculate the Grashof condition of the fourbar...Ch. 2 - Prob. 2.16PCh. 2 - Describe the difference between a cam-follower...Ch. 2 - Examine an automobile hood hinge mechanism of the...Ch. 2 - Find an adjustable arm desk lamp of the type shown...Ch. 2 - The torque-speed curve for a 1/8 hp permanent...Ch. 2 - Find the mobility of the mechanisms in Figure...Ch. 2 - Find the Grashof condition and Barker...Ch. 2 - Find the rotatability of each loop of the...Ch. 2 - Find the mobility of the mechanisms in Figure...Ch. 2 - Find the mobility of the ice tongs in Figure P2-6:...Ch. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Find the mobility of the corkscrew in Figure P2-9.Ch. 2 - Figure P2-10 shows Watts sun and planet drive that...Ch. 2 - Figure P2-11 shows a bicycle handbrake lever...Ch. 2 - Figure P2-12 shows a bicycle brake caliper...Ch. 2 - Find the mobility, the Grashof condition, and the...Ch. 2 - The approximate torque-speed curve and its...Ch. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Sketch the equivalent linkage for the cam and...Ch. 2 - Describe the motion of the following rides,...Ch. 2 - For the mechanism in Figure P2-1 a, number the...Ch. 2 - Repeat Problem 2-38 for Figure P2-1b.Ch. 2 - Repeat Problem 2-38 for Figure P2-1c.Ch. 2 - Prob. 2.41PCh. 2 - Find the mobility, the Grashof condition, and the...Ch. 2 - Find the mobility, the Grashof condition, and the...Ch. 2 - Figure P2-20 shows a Rube Goldberg mechanism that...Ch. 2 - All the eightbar linkages in Figure 2-11 part 2...Ch. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Find the mobility of the mechanism shown in Figure...Ch. 2 - Find the mobility of the mechanism shown in Figure...Ch. 2 - Find the mobility of the mechanism shown in Figure...Ch. 2 - Find the mobility of the mechanism shown in Figure...Ch. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Repeat Problem 2-38 for Figure P2-1f.Ch. 2 - Repeat Problem 2-38 for Figure P2-1g.Ch. 2 - For the example linkage shown in Figure 2-4 find...Ch. 2 - For the linkage shown in Figure 2-5b find the...Ch. 2 - Prob. 2.58PCh. 2 - Figure P2-21b shows a mechanism. Find its mobility...Ch. 2 - Prob. 2.60PCh. 2 - Figure P2-21 d shows a log transporter. Draw a...Ch. 2 - Figure P2-21e shows a plow mechanism attached to a...Ch. 2 - Figure P2-22 shows a Hart inversor sixbar linkage....Ch. 2 - Figure P2-23 shows the top view of the partially...Ch. 2 - Figure P2-24a shows the seat and seat-back of a...Ch. 2 - Figure P2-24b shows the mechanism used to extend...Ch. 2 - Figure P2-24b shows the mechanism used to extend...Ch. 2 - Figure P2-25 shows a sixbar linkage. Is it a Watt...Ch. 2 - Use number synthesis o find all the possible link...Ch. 2 - Use number synthesis to find all the possible link...Ch. 2 - Prob. 2.71PCh. 2 - For the mechanism in Figure P2-26, number the...Ch. 2 - Figure P2-27 shows a schematic of an exercise...Ch. 2 - Calculate the mobility of the linkage in Figure...Ch. 2 - Calculate the Grashof condition of the fourbar...Ch. 2 - The drum brake mechanism in Figure P2-4g is a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- MANUFACTURING COMPONENT DESI Calculate and classify mechanism for the four-bar linkage (Figure 2) with setting #1 to #5 either in theGrashof, non-Grasshof or special Grashof condition. Name the type of mechanism either in crack-rocker,double-crank or double-rocker.arrow_forwardi need her solving all part with count the number of link and full joint on the graph very urgent and what means the character of assemblyarrow_forwardIn a four-bar mechanism ABCD, the fixed link AD is 100 mm, input link AB is 55 mm, coupler BC is 80 mm and the follower CD is 90 mm. Prove that the kinematic chain make crank rocker mechanism. With neat sketch briefly explain how will you convert it into double crank mechanism and double rocker mechanism?arrow_forward
- Theory of machinearrow_forwardshow all steps/solution. no copied answerarrow_forward4-71. For the shaft shown in Figure P4-71, compute the angle of twist of pulleys B and C relative to A. The steel shaft has a diameter of 35 mm throughout its length. The torques are T = 1500 N- m, T, = 1000 N.m, T 500 N. m. The lengths are L = 500 mm, L,=800 mm. %3D %3D %3Darrow_forward
- In a crank and slotted lever quick return mechanism, distance between fixed centers is 300mm and length of driving crank is 180mm. The inclination of slotted bar with vertical extreme position is degrees.arrow_forward|design a simple piston-like crank-slider mechanism that looks similar to the Figure 4 (not to scale). The centre of the crank and the slider are aligned vertically to each other. It has already been determined that the crank radius (O2A) must be 25mm, while the slider block is in a square shape of 20 mm by 20 mm. The highest position of the slider (Hmax), which is the furthest vertical distance of the slider from the centre of the crank, must be 92 mm. Based on the given design parameters, your task is to determine the suitable couple length (AB) and the lowest position of the slider (Hmin). Your superior has asked you to present the results graphically. 20 Slider 10 20 H Crank O2 Figure 4arrow_forwardFigure below shows a four-bar linkage (non-scaled diagram) at an instant. The input angle is equal to the output angle (02 - 04) and the transmission angle is 30°. The input link is extended beyond joint B and an input force (Fin) is applied at the end of it, while an output force is drawn from the midpoint of the output link. If an output force of 30 N is desired from an input force of 10 N, how far the input link should be extended, i.e., what is the distance from point B to the point where Fin is applied. Fin B out undefined 02 04 A. Non-scaled diagram; AB = 10, CD=r4 = 30 (output), all in mmarrow_forward
- Question No. 1: A pair of bolt cutters is shown in Figure 1.0. Draw a kinematic diagram of the mechanism, selecting the lower handle as the frame. The end of the upper handle and the cutting surface of the jaws should be identified as points of interest. Specify the number of links and the number of joints and calculate the mobility for the mechanism shown in the figure. (CLO 1, PLO 1)arrow_forwardIn the textbook (Machine Elements in Mechanical Design 6th Edition by Robert L. Mott, Edward M. Vavrek, and Jyhwen Wang) chapter 20 problem 6 I’m having trouble trying to understand and solve it with the information given to me. Was also told to avoid a circular pattern which confused me more. Images below.arrow_forwardFind the degrees of freedom of the mechanism in the figure.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Force | Free Body Diagrams | Physics | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4Bwwq1munB0;License: Standard YouTube License, CC-BY