University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.40E
Touchdown on the Moon. A lunar lander is making its descent to Moon Base I (Fig. E2.40). The lander descends slowly under the retro-thrust of its descent engine. The engine is cut off when the lander is 5.0 m above the surface and has a downward speed of 0.8 m/s. With the engine off, the lander is in free fall. What is the speed of the lander just before it touches the surface? The acceleration due to gravity on the moon is 1.6 m/s2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A lunar lander is making its descent to Moon Base I . The lander descends slowly under the retro-thrust of its descent engine. The engine is cut off when the lander is 5.0 m above the surface and has a downward speed of 0.8 m>s.With the engine off, the lander is in free fall. What is the speed of the lander just before it touches the surface? The acceleration due to gravity on the moon is 1.6 m/s2.
Wiley Coyote has missed the elusive road runner once again. This time, he leaves the edge of a 100-m high cliff with a horizontal velocity of 50.0 m/s. How long will
it take Wiley Coyote to reach the bottom of the canyon?
1e. A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of v0 = 18.5 m/s. The cliff is h = 20.0 m above a flat, horizontal beach as shown in the figure.
How long after being released does the stone strike the beach below the cliff? (in seconds)
Chapter 2 Solutions
University Physics (14th Edition)
Ch. 2 - Does the speedometer of a car measure speed or...Ch. 2 - The black dots at the top of Fig. Q2.2 represent a...Ch. 2 - Can an object with constant acceleration reverse...Ch. 2 - Under what conditions is average velocity equal to...Ch. 2 - Is it possible for an object to be (a) slowing...Ch. 2 - Under what conditions does the magnitude of the...Ch. 2 - When a Dodge Viper is at Elwoods Car Wash, a BMW...Ch. 2 - A driver in Massachusetts was sent to traffic...Ch. 2 - Can you have zero displacement and nonzero average...Ch. 2 - Can you have zero acceleration and nonzero...
Ch. 2 - Can you have zero velocity and nonzero average...Ch. 2 - An automobile is traveling west. Can it have a...Ch. 2 - The officials truck in Fig. 2.2 is at x1 = 277 m...Ch. 2 - Under constant acceleration the average velocity...Ch. 2 - You throw a baseball straight up in the air so...Ch. 2 - Prove these statements: (a) As long as you can...Ch. 2 - A dripping water faucet steadily releases drops...Ch. 2 - If you know the initial position and initial...Ch. 2 - From the top of a tall building, you throw one...Ch. 2 - You run due cast at a constant speed of 3.00 m/s...Ch. 2 - An object is thrown straight up into the air and...Ch. 2 - When you drop an object from a certain height, it...Ch. 2 - A car travels in the +x-direction on a straight...Ch. 2 - In an experiment, a shearwater (a seabird) was...Ch. 2 - Trip Home. You normally drive on the freeway...Ch. 2 - From Pillar to Post. Starting from a pillar, you...Ch. 2 - Starting from the front door of a ranch house, you...Ch. 2 - A Honda Civic travels in a straight line along a...Ch. 2 - CALC A car is stopped at a traffic light. It then...Ch. 2 - CALC A bird is flying due east. Its distance from...Ch. 2 - A ball moves in a straight line (the x-axis). The...Ch. 2 - A physics professor leaves her house and walks...Ch. 2 - A test car travels in a straight line along the...Ch. 2 - Figure E2.12 shows the velocity of a solar-powered...Ch. 2 - The Fastest (and Most Expensive) Car! The table...Ch. 2 - CALC A race car starts from rest and travels east...Ch. 2 - CALC A turtle crawls along a straight line, which...Ch. 2 - An astronaut has left the International Space...Ch. 2 - CALC A cars velocity as a function of time is...Ch. 2 - CALC The position of the front bumper of a test...Ch. 2 - An antelope moving with constant acceleration...Ch. 2 - BIO Blackout? A jet fighter pilot wishes to...Ch. 2 - A Fast Pitch. The fastest measured pitched...Ch. 2 - A Tennis Serve. In the fastest measured tennis...Ch. 2 - BIO Automobile Air Bags. The human body can...Ch. 2 - BIO A pilot who accelerates at more than 4g begins...Ch. 2 - BIO Air-Bag Injuries. During an auto accident, the...Ch. 2 - BIO Prevention of Hip Fractures. Falls resulting...Ch. 2 - BIO Are We Martians? It has been suggested, and...Ch. 2 - Entering the Freeway. A car sits on an entrance...Ch. 2 - At launch a rocket ship weighs 4.5 million pounds....Ch. 2 - A cat walks in a straight line, which we shall...Ch. 2 - The graph in Fig. E2.31 shows the velocity of a...Ch. 2 - Two cars, A and B, move along the x-axis. Figure...Ch. 2 - A small block has constant acceleration as it...Ch. 2 - At the instant the traffic light turns green, a...Ch. 2 - (a) If a flea can jump straight up to a height of...Ch. 2 - A small rock is thrown vertically upward with a...Ch. 2 - A juggler throws a bowling pin straight up with an...Ch. 2 - You throw a glob of putty straight up toward the...Ch. 2 - A tennis ball on Mars, where the acceleration due...Ch. 2 - Touchdown on the Moon. A lunar lander is making...Ch. 2 - A Simple Reaction-Time Test. A meter stick is held...Ch. 2 - A brick is dropped (zero initial speed) from the...Ch. 2 - Launch Failure. A 7500-kg rocket blasts off...Ch. 2 - A hot-air balloonist, rising vertically with a...Ch. 2 - BIO The rocket-driven sled Sonic Wind No. 2, used...Ch. 2 - An egg is thrown nearly vertically upward from a...Ch. 2 - A 15-kg rock is dropped from rest on the earth and...Ch. 2 - A large boulder is ejected vertically upward from...Ch. 2 - You throw a small rock straight up front the edge...Ch. 2 - CALC A small object moves along the x-axis with...Ch. 2 - CALC A rocket starts from rest and moves upward...Ch. 2 - CALC The acceleration of a bus is given by ax(t) =...Ch. 2 - CALC The acceleration of a motorcycle is given by...Ch. 2 - BIO Flying Leap of the Flea. High-speed motion...Ch. 2 - BIO A typical male sprinter can maintain his...Ch. 2 - CALC A lunar lander is descending toward the moons...Ch. 2 - Earthquake Analysis. Earthquakes produce several...Ch. 2 - A brick is dropped from the roof of a tall...Ch. 2 - A rocket carrying a satellite is accelerating...Ch. 2 - A subway train starts from rest at a station and...Ch. 2 - A gazelle is running in a straight line (the...Ch. 2 - Collision. The engineer of a passenger train...Ch. 2 - A ball starts from rest and rolls down a hill with...Ch. 2 - Two cars start 200 m apart and drive toward each...Ch. 2 - A car and a truck start from rest at the same...Ch. 2 - You are standing at rest at a bus stop. A bus...Ch. 2 - Passing. The driver of a car wishes to pass a...Ch. 2 - CALC An objects velocity is measured to be vx(t) =...Ch. 2 - CALC The acceleration of a particle is given by...Ch. 2 - Egg Drop. You are on the roof of the physics...Ch. 2 - A certain volcano on earth can eject rocks...Ch. 2 - An entertainer juggles balls while doing other...Ch. 2 - Look Out Below. Sam heaves a 16-lb shot straight...Ch. 2 - A flowerpot falls off a windowsill and passes the...Ch. 2 - Two stones are thrown vertically upward from the...Ch. 2 - A Multistage Rocket. In the first stage of a...Ch. 2 - During your summer internship for an aerospace...Ch. 2 - A physics teacher performing an outdoor...Ch. 2 - A helicopter carrying Dr. Evil takes off with a...Ch. 2 - Cliff Height. You are climbing in the High Sierra...Ch. 2 - CALC An object is moving along the x-axis. At t =...Ch. 2 - A ball is thrown straight up from the ground with...Ch. 2 - CALC Cars A and B travel in a straight line. The...Ch. 2 - DATA In your physics lab you release a small...Ch. 2 - DATA In a physics lab experiment, you release a...Ch. 2 - DATA A model car starts from rest and travels in a...Ch. 2 - In the vertical jump, an athlete starts from a...Ch. 2 - Catching the Bus. A student is running at her top...Ch. 2 - A ball is thrown straight up from the edge of the...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What class of motion, natural or violent, did Aristotle attribute to motion of the Moon?
Conceptual Physics (12th Edition)
Choose the best answer to each of the following. Explain your reasoning. The number of stars in the Milky Way G...
Cosmic Perspective Fundamentals
In which extrasolar planet system(s) (A–D) is the planet closest to the star?
Lecture- Tutorials for Introductory Astronomy
5. A 65 kg gymnast wedges himself between two closely spaced vertical walls by pressing his hands and feet ag...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two children are playing on a 151-m-tall bridge. One child drops a rock (initial velocity zero) at t = 0. The other waits 1.1 s and then throws a rock downward with an initial speed Vo. If the two rocks hit the ground at the same time, what is vo? m/sarrow_forwardA baseball player throws a baseball straight up into the air, in the following way: Starting from a height of 1.0 m above the ground, he accelerates the ball vertically with 30. m/s2 for 0.25 s, then the ball leaves his hand and flies straight up in free fall. Let’s ignore the air resistance. Draw a carefully labeled sketch of the situation. Calculate the velocity of the ball as it leaves the player’s hand. How high does the ball go relative to its initial position (yo=1.0 m)? Shows all work please.arrow_forward3. A rocket, initially at rest, is fired vertically upward with an acceleration of 10 m / s2. At a height of 0.50 km, the rocket engine shuts down. What is the maximum height the rocket reaches? choose an answer A B C D E 1.9 km 1.3 km 1.6 km 1.0 km 2.1 kmarrow_forward
- You are on the roof of the physics building, 46 m above the ground. Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your professor’s head, where should the professor be when you release the egg? Assume that the egg is in free fall.arrow_forwardSonglu loves Vin Diesel and has watched every Fast and Furious movie, even Tokyo Drift! To get Vin Diesel's attention on TicTok she decides to redo one of his movie stunts. Songlu rents a Porsche 911 convertible, pays the extra $10 per day for insurance, and then drives to Big Bear. When she gets there, Songlu puts on her parachute and drives at a speed of 215 mph (96.1 m/s) off of a 450 m tall cliff, jumping out mid air so she can use her parachute on the way down. How far does Rubbab's rented Porsche 911 land from the base of the cliff? O 832 m O 614 m O 1,230 m O 921 marrow_forwardA rocket starts from rest and moves upward from the surface of the earth. For the first 10.0 s of its motion, the vertical acceleration of the rocket is given by ay= (2.80 m/s^3)t, where the +y direction is upward. a) What is the height of the rocket above the surface of the earth at t = 10.0 s? b) What is the speed of the rocket when it is 325 m above the surface of the earth?arrow_forward
- When you fly in an airplane at night in smooth air, you have no sensation of motion, even thoughthe plane may be moving at 800 km/h (500 mi/h). Why?arrow_forwardIn a classic clip on Americas Funniest Home Videos, a sleeping cat rolls gently off the top of a warm TV set. Ignoring air resistance, calculate the position and velocity of the cat after (a) 0.100 s, (b) 0.200 s, and (c) 0.300 s.arrow_forwardWhile standing at the edge of the roof of a building, a man throws a stone upward with an initial speed of 6.71 m/s. The stone subsequently falls to the ground, which is 16.7 m below the point where the stone leaves his hand. At what speed does the stone impact the ground? Ignore air resistance and use g = 9.81 m/s² for the acceleration due to gravity. impact speed: m/s How much time is the stone in the air? elapsed time: Sarrow_forward
- You are on the roof of the lecture hall, 51.8 m above ground. As your physics professor, who is 1.8 m tall, walks towards the hall at a constant speed of 1.2 m/s. If you wish to drop an egg on your professor's head, where should the professor be when you release the egg? Assume egg is in freefall and air resistance is ignored.arrow_forwardOK, yet another strange awakening in a room with no windows. This time you drop a ball from a height of 1.25 m and it hits the floor 0.404 s after you drop it. This time you suspect you are on a rocket that has just left the surface of the Earth, and is still not too far above the ground. What do you deduce the rocket s acceleration to be? 11.0 m/s^2 5.5 m/s^2 25.1 m/s^2 15.3 m/s^2arrow_forwardA rocket accelerates at 25m/s2 from rest on a frictionless inclined surface. The inclined ramp has a height of 70m and makes a 32 degrees angle above the ground. The rocket stops accelerating at the instant it leaves the incline. If air resistance is negligible, what is the horizontal distance 'R' from the end of the ramp to the point of impact (where it hits the ground)? a) Draw a diagram of this situation and be sure to include the distance 'R' b) Calculate the distance 'R' from the end of the ramp to the point of impact. 1.Draw the clear diagram 2. Give the indicating distance 'R' 3. Show your work 4. Find vertical and horizontal components of velocity when rocket leaves ramp 5. Find distance 'R'arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY