Modern Physics For Scientists And Engineers
2nd Edition
ISBN: 9781938787751
Author: Taylor, John R. (john Robert), Zafiratos, Chris D., Dubson, Michael Andrew
Publisher: University Science Books,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.39P
To determine
To Prove:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This problem deals quantitatively with the experiment of problem 1.1. Let 5denote the ground frame of reference and 5' the train's rest frame. Let the speedof the train, as measured by ground observers, be 30 m/sec in the x direction, andsuppose the stone is released at t' = a at the point x' = y' = 0, z' = 7.2 m.(a) Write the equations that describe the stone's motion in frame 5'. That is,give x', y', and z' as functions of t'. (Note: A body starting from rest and movingwith constant acceleration g travels a distance 1/2 gt2 in time t. Gravity produces aconstant acceleration whose lnagnitude is approximately 10 m/sec/sec.)(b) Use the Galilean transform,ation to write the equations that describe theposition of the stone in frame S. Plot the stone's position at intervals of 0.2 sec,and sketch the curve that describes its trajectory in frame 5. What curve is this?(c) The velocity acquired by a body starting from rest with acceleration g is gt.Write the equations that describe the three…
Problem 3:
A mass m is thrown from the origin att = 0 with initial three-momentum po in the y direction. If it is
subject to a constant force F, in the x direction, find its velocity v as a function of t, and by integrating v
find its trajectory. Check that in the non-relativistic limit the trajectory is the expected parabola.
Hint: The relationship F = P is still true in relativistic mechanics, but now p = ymv instead of
p = mv. To find the non-relativistic limit, treat c as a very large quantity and use the Taylor approximation
(1+ x)" = 1 + nx when a is small.
2.9. (a) Solve the integral
...| (dx .dx3N)
3N
and use it to determine the "volume"
the relevant region of the phase space of an extreme
relativistic gas ( = pc) of 3N particles moving in one dimension. Determine, as well, the
number of ways of distributing a given energy E among this system of particles and show that,
asymptotically, w0 = h³N.
(b) Compare the thermodynamics of this system with that of the system considered in Problem 2.8.
Chapter 2 Solutions
Modern Physics For Scientists And Engineers
Ch. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10P
Ch. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Evaluate the rest energy (in MeV) for the proton (m,= 1.673 x 10-27 kg) and the deuteron (ma= 3.344 × 102" kg). Next, assume y = 2 for either particle. What is the particle velocity (m/sec)? What are the "kinetic energies" (the total energy minus the rest energy) for both particles in MeV. Repeat for y = 10.arrow_forwardSolve the part b just part barrow_forwardSolve it correctly please. I will rate accordingly with multiple votes.arrow_forward
- Prove that F= m (2x/t^2) from equations (2.1) – (2.4).arrow_forwardThe work–energy theorem relates the change in kineticenergy of a particle to the work done on it by an externalforce: ΔK = W = ∫ F dx. Writing Newton’s second lawas F = dp/dt, showthatW =∫ v dpand integrate by partsusing the relativistic momentum to obtain Equation 2.34. K = (mc^2)/√((1 − v2)/c^2) − mc^2arrow_forwardSolve the part 2 for itarrow_forward
- 3.9. A particle is traveling at 3c in the x direction. Determine its proper velocity, n (all four components).arrow_forwardCould you please explain example 2.1.9 with the table.arrow_forwardThe figure shows two railway cars with a buffer spring. We want to investigate the transfer of momentum that occurs after car 1 with initial velocity v0 impacts car 2 at rest. The differential equation is given below. Show that the eigenvalues of the coefficient matrix A are λ1=0 and λ2=−c1−c2, with associated eigenvectors v1= 1 1 T and v2= c1 −c2 T. x′′= −c1 c1 c2 −c2 x with ci=k /mi for i=1, 2 The coefficient matrix A is .arrow_forward
- Can you solve the Problem 2.1? But i just want to option B) Thanks and please make brief explanation.arrow_forwardLorentz Force Problem 2.01. A charge q = 5.45 mC moves at a velocity = 3.50 × 10³ (+3) in a uniform magnetic field B = 5.00 mT (3). (a) Find the direction and magnitude of the force experienced by this charge. (b) What direction and magnitude of electric field is needed to cancel the magnetic force on the particle?arrow_forwardSpace and time are interconnected according to special relativity. Because of that, coordinates have four components (three position coordinates x, y, z, one time coordinate t) and can be ex- pressed as a vector with four rows as such: (3) ct The spaceship from problem A.4 (Special Relativity - Part I) travels away from the Earth into the deep space outside of our Milky Way. The Milky Way has a very circular shape and can be ex- pressed as all vectors of the following form (for all 0arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY