2.34. You arrive at your lab at 8 a.m. and add an indeterminate quantity of bacterial cells to a flask. At 11 a.m. you measure the number of cells using a spectrophotometer (the absorbance of light is directly related to the number of cells) and determine from a previous calibration that the flask contains 3850 cells, and at 5 p.m. the cell count has reached 36,530.
- Fit each of the following formulas to the two given data points (that is, determine the values of the two constants in each formula): linear growth, C = Co + kt; exponential growth, C = Coe*'; power-law growth, C = ktb. In these expressions, Co is the initial cell concentration and k and b arc constants.
- Select the most reasonable of the three formulas and justify your selection.
- Estimate the initial number of cells present at 8 a.m. (/ = 0). State any assumptions you make.
- The culture needs to be split into two equal parts once the number of cells reaches 2 million. Estimate the time at which you would have to come back to perform this task. State any assumptions you make. If this is a routine operation that you must perform often, what does your result suggest about the scheduling of the experiment?
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Elementary Principles of Chemical Processes, Binder Ready Version
Additional Engineering Textbook Solutions
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Starting Out With Visual Basic (8th Edition)
Mechanics of Materials (10th Edition)
Database Concepts (8th Edition)
Introduction To Programming Using Visual Basic (11th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
- Q2/ Derive Von-Karman Eqn which is given in lecture and derive velocity profile for T-flow through the pipe as: Where a radius and r is the distance from 1 V₁ = (V2)=0+ +In 1- EV the center.arrow_forwardplease.. please, provide me with sampling calculation (more details), this is the 4th sending for this questionarrow_forwardDate: 19 1972024 Q1: For a non-Newtonian power law fluid, r=K (du/dr)" flowing in a tube in laminar manner subjected to a constant heat flux at the wall and having constant thermo physical properties. A- Find an expression for the velocity profile. B- Using n=2, conduct a suitable heat balance and try to obtain an expression for the heat transfer coefficient between the wall and the fluid.arrow_forward
- Ge =S(zijde obying Vanderwoolseg. show that RT гиф Lud = bb - RTV v-b + Lu Rī P(V-b) then find (P.) (TP, a, b,v) (s 3. ↓ tb t looc lobar S 8 0.5m³arrow_forwardStudent Question 67% D 三 Copy ID Determine the relative amounts (in terms of volume fractions) for a 67.0 wt% Pb-33.0 wt% Mg alloy at 425°C. The densities of lead and magnesium at 425°C are given as follows: PPb 10.96 g/cm³ = PMg 1.68 g/cm³ You may also want to use Animated Figure 9.20. Va = 0.4558 0.5442 VMg2Pb Your Submission Rating Sub-Subject Thesis/Dissertation, Research, Or Independent Study In Mechanical Engineering Step-by-step A Step 1 of 2 Given that. Topic N/Aarrow_forwardAdvance Statistics and DOL 01 (90%): Use the below experimental regions information and the data given in the below table to run and analyze the Yield of reactor presented below: Factors; Response: Temperature (°C): (150, 250) Pressure (bar): (1.5, 10) Flow Rate (L/min): (10, 30) Yield (%): Hypothetical yield data for each combination of factors. Use 2 factorial, full factorial, Central Composite, and Box-Behnken designs to construct the design tables that are required to run the experiments (real and coded). Then analyze the results using MINITAB software to show the regression model for you think is the Yield and most effective parameters and interaction. Which design do the giving best model fitting based on your results? (Note; use 3 center point). 02 (10%): Use the Hypothetical yield data shown in the below Table to find the variance and standard deviation and the median. Hypothetical Yield Data Run Temperature (°C) Pressure (bar) Flow Rate (L/min) Yield (%) 1 150 1 10 65 2 150 1…arrow_forward
- Derive the formula boundary-s layer, thickness 5x Rexarrow_forwardQ2] The reaction AR + S is irreversible and first order. It is conducted in a PFR with 50 tubes, each with 0.5 in diameter and 1.0 m of height. 200 kg/h of reactant A (MW-80 g/gmol) with 30% inert is introduced at a pressure of 50 atm at 500°C. The output conversion is 80%. Calculate the average residence time.arrow_forwardplease, provide me with right resultsarrow_forward
- Ex. HW. A vertical glass tube, 2cm ID & 5m long in heated uniformly over its length. The water enter at (200-204 C) & 68.9 bar calculated the pressure drop if the flowrate 0.15 Kg/s & the power applied as a heat to the fluid is 100KW using the homogeneous model. Given that enthalpy at inlet temp.=0.87MJ/Kg, enthalpy saturation temp (285C)=1.26 MJ/Kg and μl=0.972*10-4 Ns/m2, μG=2.89*10-5 Ns/m2, UG=2.515*10-2m3/Kg and the change in UG over range of pressure=-4.45*10-4m3/Kg/bar.arrow_forward4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs at one end and air at a rate of 5 x 104 kgs in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs 1, 61.1 kgm³, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forwardand the viscosity of the water is 1.24 × 104 Nsm 2. Answer: Slug flow 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The