Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.27P

A pan is used to boil water by placing it on a stove, from which heat is transferred at a fixed rate q 0 . Thre are two stages to the process. In Stage 1, the water is taken from its initial (room) temperature T i to the boiling point, as heat is transferred from the pan by natural convection. During this stage, a constant value of the convection coefficient h may be assumed. while the bulk temperature of the water increases with time, T = T ( t ) . In Stage 2, the water has come to a boil, and its temperature remains at a fixed value, T = T b , as heating continues. Consider a pan bottom of thickness L and diameter D. with a coordinate system corresponding to x = 0 and x = L for the surfaces in contact with the stove and water, respectively.

  1. Write the form of the heat equation and the boundary/initial conditions that determine the variation of temperature with position and time, T ( x , t ) , in the pan bottom during Stage 1. Express your result in terms of the parameters q O , D, L, h, and T , as well as appropriate properties of the pan material.
  2. During Stage 2, the surface of the pan in contact with the water is at a fixed temperature, T ( L , t ) = T L > T b . Write the form of the heat equation and boundary conditions that determine the temperature distribution T ( x ) in the pan bottom. Express your result in terms of the parameters q o , D. L and T L , as well as appropriate properties of the pan material.

Blurred answer
Students have asked these similar questions
Suppose that as a body cools, the temperature of the surrounding medium increases because it completely absorbs the heat being lost by the body. Let T(t) and Tm (t) be the temperatures of the body and the medium at time t, respectively. If the initial temperature of the body is T1 and the initial temperature of the medium is T2, then it can be shown in this case that Newton's law of cooling is dT/dt = k(T - Tm ), k 0 is a constant. (a) The foregoing DE is autonomous. Determine the limiting value of the temperature T(t) as t→ o What is the limiting value of Tm (t) as t→o? (b) Verify your answers in part (a) by actually solving the differential equation. (c) Discuss a physical interpretation of your answers in part (a).
In a cylindrical fuel element for a gas-cooled nuclear reactor, the heat generation rate within the fuel element due to fission can be approximated by the relation: g(r) = g_0 [1 - (r/b)^2] W/m^3 where b is the radius of the fuel element and g_0 is constant. The boundary surface at r = b is maintained at a uniform temperature T_0. Assuming one-dimensional, steady-state heat flow, develop a relation for the temperature drop from the centerline to the surface of the fuel element. For radius b = 2 cm, the thermal conductivity k = 10 W/m middot K and g_0 = 2 times 10^7 W/m^3, calculate the temperature drop from the centerline to the surface.
Solve it quickly please

Chapter 2 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license