Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.20E
The statement “Energy can be neither created nor destroyed” is sometimes used as an equivalent statement of the first law of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Physical Chemistry
Ch. 2 - Calculatethe work performed by a person whoexertsa...Ch. 2 - Explain inyour own words why work done by the...Ch. 2 - Calculate the work in joules when a piston moves...Ch. 2 - Calculatethe work on the system whena piston is...Ch. 2 - Calculatethe work in joules needed to expanda...Ch. 2 - Consider exercise 2.5. Would the workbe more or...Ch. 2 - Apistonhaving0.033 mol ofgas at 35.0Cexpands...Ch. 2 - A bottle of soda has a head space containing 25.0...Ch. 2 - Prob. 2.9ECh. 2 - Calculate the specific heat of a material if 288J...
Ch. 2 - There is 3930 J of energy added to a 79.8-g sample...Ch. 2 - If the heat capacity varies withtemperature,...Ch. 2 - Liquid hydrogen fluoride, liquid water,and liquid...Ch. 2 - A 5-mmdiameter hailstone has a terminal velocity...Ch. 2 - A7.50-gpiece of iron at 100.0C is dropped into...Ch. 2 - With reference to Joules apparatus inFigure2.6,...Ch. 2 - Prob. 2.17ECh. 2 - True or false: Althoughwork done bya free...Ch. 2 - What arethe differencesbetween an open, a closed,...Ch. 2 - The statement Energycan beneithercreatednor...Ch. 2 - Prob. 2.21ECh. 2 - What is the change in internal energy when a gas...Ch. 2 - Calculate the work for the isothermal, reversible...Ch. 2 - Calculate the work donewhen 1.000 mole of an ideal...Ch. 2 - Apistonhaving0.033 mol of gas at 35.0C expands...Ch. 2 - Prob. 2.26ECh. 2 - Indicate which state function is equal to heat, q,...Ch. 2 - The distance between downtown San Francisco and...Ch. 2 - Is temperature astate function?Defend your answer.Ch. 2 - A piston reversibly and adiabatically contracts...Ch. 2 - Calculate U when 1.00 mol of H2 goes from 1.00...Ch. 2 - Many compressed gases come in large,heavy metal...Ch. 2 - Under what conditions will U be exactly zero for a...Ch. 2 - Aballoon filled with 0.505 mole of gascontracts...Ch. 2 - A piston having 7.23 g of steam at 110 C increases...Ch. 2 - It takes 2260 J to vaporize a gram of liquid water...Ch. 2 - True or false: Any process for which H is negative...Ch. 2 - Prob. 2.38ECh. 2 - A refrigerator contains approximately 17cubic...Ch. 2 - In a constant-volume calorimeter, 35.0g of H2cools...Ch. 2 - A 2.50-mol sample of gas is compressed...Ch. 2 - A 244-g amount of coffee in an open plastic cup...Ch. 2 - Prob. 2.43ECh. 2 - Starting with equation 2.27 andthe original...Ch. 2 - Derive the fact that HpT is also zero for an ideal...Ch. 2 - Define isobaric,isochoric, isenthalpic,and...Ch. 2 - Starting from the cyclicrule involvingthe Joule-...Ch. 2 - The ideal gas law is theequation of state for an...Ch. 2 - Prob. 2.49ECh. 2 - Estimatethe final temperature of a mole of gas at...Ch. 2 - With regard to exercise 2.50, how accurate do you...Ch. 2 - Use the data in Table 2.2 to determine Hp T for Ar...Ch. 2 - Use the data in Table 2.2 to determine PH T for N2...Ch. 2 - Someone proposes thatthe Joule-Thomson coefficient...Ch. 2 - Why is equation2.37 written interms of CV and Cp...Ch. 2 - What are the numerical values of the heat...Ch. 2 - In a constant-pressure calorimeter that is, one...Ch. 2 - What is the finaltemperature of0.122 mole...Ch. 2 - Prob. 2.59ECh. 2 - Show that =5/3 for a monatomic ideal gas.Ch. 2 - Prob. 2.61ECh. 2 - Prob. 2.62ECh. 2 - A 1.00 mol sample of H2 is carefully warmed from...Ch. 2 - Asampleof a monatomic ideal gas doubles itsvolume...Ch. 2 - A sample of an ideal diatomic gas is compressed...Ch. 2 - In orbit about Earth, a weather balloonjettisons a...Ch. 2 - Prob. 2.67ECh. 2 - Prob. 2.68ECh. 2 - If pumping up an automobile tire is assumed to be...Ch. 2 - Prob. 2.70ECh. 2 - Take the volume change into account and calculate...Ch. 2 - How much work is performed by 1 mole of water...Ch. 2 - Why are steam burns so much worse than water burns...Ch. 2 - How many grams of water at 0C will be melted by...Ch. 2 - Draw a diagram like Figure 2.11 that illustrates...Ch. 2 - Determine the rxnH(25C) of the following reaction:...Ch. 2 - Determine rxnH 25 C for the following reaction: NO...Ch. 2 - The enthalpy of combustion of...Ch. 2 - The enthalpy of combustion of diamond is -395.4...Ch. 2 - Using Hesss law, writeout allof the formation...Ch. 2 - Sublimation is the phase change from solid to gas...Ch. 2 - The thermite reaction combines aluminum powder and...Ch. 2 - Benzoic acid, C6H5COOH, is a common standard used...Ch. 2 - Assume that 1.20 g of benzoicacid, C6H5COOH, is...Ch. 2 - Natural gas is mostly CH4. When it burns, the...Ch. 2 - Assuming constant heatcapacities for products and...Ch. 2 - Use the heat capacities of the products and...Ch. 2 - The following are values of heat capacity for...Ch. 2 - Prob. 2.89ECh. 2 - Prob. 2.90ECh. 2 - The Dieterici equation of state for one mole of...Ch. 2 - Prob. 2.92ECh. 2 - Find the enthalpies of the combustion reactions...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The second law of thermodynamics is sometimes paraphrased as: you can't break even. Explain. Because energy cannot be created out of nothing. Because some energy is lost in all energy transactions. Because some energy is gained in all energy transactons.arrow_forwardCoal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forwardUnder what circumstances is the heat of a process equal to the enthalpy change for the process?arrow_forward
- 9.11 Analyze the units of the quantity (pressurevolume) and show that they are energy units, consistent with the idea of PV-work.arrow_forwardA pot of cold water is heated on a stove, and when the water boils, a fresh egg is placed in the water to cook. Describe the events that are occurring in terms of the zeroth law of thermodynamics.arrow_forwardAt 298 K, the standard enthalpies of formation for C2H2(g) and C6H6(l) are 227 kJ/mol and 49 kJ/mol, respectively. a. Calculate H for C6H6(l)3C2H2(g) b. Both acetylene (C2H2) and benzene (C6H6) can be used as fuels. Which compound would liberate more energy per gram when combusted in air?arrow_forward
- Gasohol, a mixture of gasoline and ethanol, C2H5OH, is used as automobile fuel. The alcohol releases energy in a combustion reaction with O2. C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) If 0.115 g ethanol evolves 3.62 kJ when burned at constant pressure, calculate the combustion enthalpy for ethanol.arrow_forwardThe reaction SO3(g)+H2O(l)H2SO4(aq) is the last step in the commercial production of sulfuric acid. The enthalpy change for this reaction is 227 kJ. In designing a sulfuric acid plant, is it necessary to provide for heating or cooling of the reaction mixture? Explain.arrow_forwardWhat mass of acetylene, C2H2(g), must be burned to produce 3420 kJ of heat, given that its enthalpy of combustion is 1301 kJ/mol? Compare this with the answer to Exercise 5.91 and determine which substance produces more heat per gram.arrow_forward
- The enthalpy of combustion of solid carbon to form carbon dioxide is 393.7 KJ/mol carbon, and the enthalpy of combustion of carbon monoxide to form carbon dioxide is 283.3 KJ/mol CO. Use these data to calculate H for the reaction 2C(s)+O2(g)2CO(g)arrow_forwardThe enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forward9.41 Under what conditions does the enthalpy change equal the heat of a process?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY