College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A 50 gram ball is thrown at a wall and bounces off Its speed just before impact is 24 m/s and its speed just after hitting the wall is 22 m/s in the opposite direction If the ball is in contact with the wall for 35 ms, what is the magnitude of the average acceleration of the ball while it is in contact with the wall?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The Starship Enterprise returns from warp drive to ordinary space with a forward speed of 57 km/s. lo the crow's great surprisc, a Klingon ship is 150 km directly ahead, traveling in the same direction at a mere 21 km/s. Without evasive action, the Enterprise will overtake and collide with the Klingons in just about 4 5s The Enterprise's computers react instantly to brake the ship. What magnitude acceleration does the Enterprise need to just barely avoid a collision with the Klingon ship? Assume the acceleration is constant Hint: Draw a position versus time graph showing the motions of both the Enterprise and the Klingon ship. Let æn - 0km be the location of the Interprise as it returns from warp drive I low do you show graphically the situation in which the collision is "barely avoided"? Once you decide what it looks like graphically, express that situation mathematically. Express your answer to two significant figures and include the appropriate units. a = μA Value m s² Review |…arrow_forwardI had a dream last night that I was chased by my teddy bear. In my dream, I was sleepwalking at a constant velocity of 60ft/sec. At exactly 4:00 am I noticed my teddy bear standing 1000 feet behind me. At that instant I began to accelerate at 10 ft/sec/sec and the teddy bear began to accerlate after me at 12 ft/sec/sec. At the moment the bear caught up to me, I woke from my dream in a cold sweat. To the nearest second, What time was this?arrow_forwardA jet plane comes in for a landing with a speed of 120 m/s. The length of the runway is 500 m. From the instant the plane touches the runway, what is the magnitude of the acceleration needed to stop within the runway? Write your answer in terms of m/s2.arrow_forward
- You and a friend ride your bikes to a restaurant across town. Both of you start at the same instant from your house, you riding 10 m/s and your friend riding 12 m/s. During the trip your friend has a flat tire and that takes him 8 minutes to fix. He then continues the trip at the same speed of 12 m/s. If the distance to the restaurant is 10 km, who gets there first?arrow_forwardA stone is thrown upward from a cliff at an angle of 35 degrees above the horizontal with a speed of 47 m/s. The stone hits the ground 5.0 s later. a) What is the x component of the stones initial velocity? v47.0m/s 35 O51.0m/s 041.0 m/s 38.5 m/s O270 m/sarrow_forwardTwo locomotives 70 kilometers apart are travelling on the same track towards each other, Engine A moves at 22 kilometers per hour east and engine B moves at 13 kilometersper hour west. At the instant both trains begin moving, an annoying mutant fly beginsflying from engine A towards engine B at 33 kilometers per hour . The instant it touchesB, it turns around and flies back. It goes on this way until the two locomotives collideand the mutant fly is finally squashed. So, before its untimely demise, a) what is the total distance the fly flew? b) the time it took till it was eliminated and c) the average velocity of the fly? how can i find this pleasearrow_forward
- Wyle E. Coyote hears a constant “Beep! Beep!” from around the corner of a cliff. Thinking it might be the Road Runner, he scampers up to speed and runs towards the sound to the East. On coming around the corner, he sees that it is not the Road Runner, but a truck coming towards him towards the West. The speed of the truck is 25 m/s. The speed of the Coyote is 100 m/s. The Coyote hears a frequency of 5500 Hz. The temperature of the air is 300 K. The mass of the truck is 1500 kg. The mass of the Coyote is 90 kg. Assume the air is an ideal gas with γ = 1.40 and the air molecules have a mass of 4.8*10-26 kg. The Boltzmann constant is k = 1.38*10-23 J/K. a. What is the speed of sound in this air? b. What is the original frequency of the horn on the truck? c. Assuming a perfectly inelastic collision, what is the final speed and direction of the truck, Coyote conglomerate (ignore any friction with the road)?arrow_forwardTwo fan carts are on parallel inclined tracks are facing opposite directions. At t=0, the carts are 2.88 m apart with the fans on and they are both given a sharp push toward each other against the direction the fans are pushing them. Cart A begins (after the push) with a speed of 1.35 m/s to the right and has an acceleration of 0.44 m/s? to the left. Cart B begins (after the push) with a speed of 1.05 m/s to the left and has an acceleration to the right of 0.52 m/s?. (Hint: Keep your positive and negative directions consistent for both carts.) A a) At what two times do the two cars pass each other? b) What are the two positions at which the cars pass each other? c) What is the velocity of each car when they pass each other? d) Graph the motion of each on the position vs. time graphs and velocity vs. time graphs on the next page. time (s) time (s) (w) uojiisod velocity (m/ş)arrow_forwardA car drives around a circular track of diameter 161 m at a constant speed of 47.4 m/s. During the time it takes the car to travel 256 degrees around, what is the magnitude of the car s average acceleration? Hint: Do not calculate instantenous accelleration. Instead calculte the average acceleration over the fraction of a complete lap. Average acceleration equals change in velocity divided by change in time, and that this is a two-dimensional situation so you'll have to calculate the x and y components of the average acceleration first and then figure out the magnitude. Remember also that ax = Δvx/Δt and ay = Δvy/Δt. 0 m/s^2 27.91 m/s^2 13.96 m/s^2 9.84 m/s^2arrow_forward
- A Doctors without Borders Cargo plane drops a large package of relief medical supplies as it is moving with a horizontal velocity vx = 250. m/s at a height above the flat ground of y=693m. What is the y component of the final velocity of the package in m/s just before it hits the ground?arrow_forwardA cart, already moving at a 3.0 m/s accelerates at a rate of 2.5 m/s squared for 2.8 seconds. What is the displacement of the cart during that period?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON