Mathematics for Machine Technology
7th Edition
ISBN: 9781133281450
Author: John C. Peterson, Robert D. Smith
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 1A
Reduce the fraction
Expert Solution & Answer
To determine
The fraction into its half.
Answer to Problem 1A
The fraction reduced to
Explanation of Solution
Given:
The number is given as
Concept used:
Divide numerator and denominator of the given fraction by GCF, that is, greatest common factor.
Calculation:
The factors of
Therefore, the greatest common factor of
Divide numerator and denominator of fraction by
Thus, the fraction reduced to
Conclusion:
The fraction reduced to
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Find An of the cosine series.
Could you see if my working is correct? I've attached it with the question
Q5 Using Hermite's algorithm find s, t = Z so that s² + t²
=
101.
Q4. Find all solutions of 91x² + y² = 1 with x, y Є Z.
Chapter 2 Solutions
Mathematics for Machine Technology
Ch. 2 - Reduce the fraction 1530to halves.Ch. 2 - Reduce 1230to lowest terms.Ch. 2 - Express 118and ?32as equivalent fractions.Ch. 2 - Express the mixed number 735as an improper...Ch. 2 - Express 9712 as a mixed number.Ch. 2 - Express the mixed number 935as an improper...Ch. 2 - Determine the lowest common denominators of the...Ch. 2 - Determine the lowest common denominators of the...Ch. 2 - Determine the lowest common denominators of the...Ch. 2 - Determine the lowest common denominators of the...
Ch. 2 - Express these fractions as equivalent fractions...Ch. 2 - Express these fractions as equivalent fractions...Ch. 2 - Express these fractions as equivalent fractions...Ch. 2 - Prob. 14ACh. 2 - Prob. 15ACh. 2 - Determine the overall length, width, and height of...Ch. 2 - Determine dimensions A, B, C, D, E, F, and G of...Ch. 2 - Determine dimensions A, B, C, and D of pin in...Ch. 2 - The operation sheet for machining an aluminum...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- Q3. Find all solutions of x² - 29y² = ±1 with x, y ɛ Z.arrow_forwardProblem 11 (Gram-Schmidt). Try the Gram-Schmidt procedure for the vectors, 1 0 2 with respect to the standard dot product on R4. What happens? Can you explain why you are unable to complete the algorithm? Problem 12 (Orthogonal Matrices Preserve Orthogonality). Suppose x, y = Rn" are orthogonal to each other with respect to some inner product (.,.) and that A is an orthogonal matrix and B is some invertible matrix. 1. Prove that Ax and Ay are also orthogonal to each other and that ||x|| = ||Ax|| and ||y|| : = ||Ay||. 2. Is it true that Bx and By are also orthogonal to each other and that ||x|| = ||Bx|| and ||y|| = = ||By||? Provide a proof or a counter-example. Problem 13 (Orthogonal Complement). Let W be the subspace of R5 spanned by, 1 2 2 4 u = 3 , v= 7 2 2 Find a basis of the orthogonal complement W- of W. Verify in this particular example that WW₁ = {0} and that dim(W) + dim(W¹) = 5.arrow_forwardProblem 5 (Rank-Nullity Theorem). Let T : P3 → M2×2 be defined as, T(p(x)) P(0) p'(1)] = 1. Prove that T is a linear transformation. 2. Find ker(T). Is T injective? 3. Find im(T). Is T surjective? 4. Verify the Rank-Nullity Theorem for T. Problem 6 (Change of Basis). Let B₁ = polynomials in P3. - - {1, x, x², x³} and B₁ = {1, x, x(x − 1), x(x − 1)(x − 2)} be two sets of 1. Is B2 a basis for P3? Justify your answer. 2. Find SB₁→B₂ and SB2→B₁. Which one is "easier" to find? - Problem 7 (Change of Basis). Let B₁ = {eª, sin² (x), cos² (x)} and B₁ = {e*, sin(2x)}. Recall that sin(20) = 2 sin(0) cos(0). Suppose V = span (B₁) and W = span(B2). Let T: VW be a linear transformation defined as T(f(x)) = f'(x). 1 1. Prove that B₁ is a basis. 2. Let g(x) = 5 - 3e. Show that g = V and find T(g(x)). 3. Find [TB₁B2 4. Is T injective? 5. Is T surjective?arrow_forward
- Problem 14 (Orthogonal Matrices). Prove each of the following. 1. P is orthogonal PT is orthogonal. 2. If P is orthogonal, then P-1 is orthogonal. 3. If P, Q are orthogonal, then PQ is orthogonal. Problem 15 (Orthogonal Complement). Consider P2 with the inner product, (f,g) = f(x)g(x)dx. Put W = span(2x+1). Find a basis of W. (1)arrow_forwardProblem 8 (Diagonalization). Let T : P₂ → P₂ be defined as, T(p(x)) = xp'(x). 1. Find the eigenvalues and eigenvectors of T. 2. Show that T is diagonalizable and write P2 as the sum of the eigenspaces of T. Problem 9 (Basis). Determine all the values of the scalar k for which the following four matrices form a basis for M2×2: A₁ = , A2 = k -3 0 , A3 = [ 1 0 -k 2 0 k " A₁ = . -1 -2 Problem 10 (Orthogonality). In this question, we will again see how orthogonality makes computations sim- pler. 1. Let u1,..., un be an (ONB) of a finite-dimensional inner product space V. Let v = c₁u₁ + ... + Сnun and w = d¹µ₁ + ... + dnUn be any two elements of V. Prove that (v, w) = c₁d₁ + ... + Cndn. 2. Write down the corresponding inner product formula for an orthogonal basis.arrow_forwardLet 01(x) = * 0(t) dt, for x > 1, where 0 is Chebyshev's function. Let A1(n) = log n if n is prime, and A₁(n) = 0 otherwise. Prove that 01(x) = (x − n) A1(n), narrow_forwardLet 01 (x) = [* 0(t) dt, for x > 1, where 0 is Chebyshev's function. Let = lim 01(x)/x². 1+00 By considering (t) dt, prove that T-ET 01(x) 01(x Ex) Ex-(x), where = (> 0) is small. - Assuming that 0(x)/x →1 as x → ∞, deduce that (1-1) ≤ 1. By similarly considering (t) dt, prove that (1+½)1 ≥1. 2 Deduce that 01(x) 1½². 2arrow_forwardConsider a rectangular membrane with fixed boundaries of dimensions 5 (horizontal) by 3 (vertical). The deflection u(x, y, t) satisfies the equation utt = 6(uxx + Uyy). (a) Find a formula for the deflection u(x, y, t), if the initial velocity g(x, y) is zero and the initial displacement f(x, y) is f(x, y) = u(x, y, 0) = 2 sin(5πx) sin(лy) - 4 sin(2x) sin(3лy) Do not show the separation of variables. Start with the formula for u(x, y, t). You need to show all details of integration or superposition (if it applies) for credit. (b) Find a numerical approximation for u(5/2, 3/2, 2).arrow_forward(a) Find the general solution to the following differential equation. Express your answer in terms of Bessel functions of the first and second kinds. Do not write any series expansions of these Bessel functions. Please explain how you arrived at your answer. x²y" + xy' + (2x² - 5)y = 0 (b) Solve the heat flow problem. Please start with the formula for u(x, t); Do not show separation of variables. Simplify your answer as much as possible. ди Ət = J²u 2 მე2 u(0,t) = u(5,t) = 0 x, 0 < x <1 u(x, 0): = 1, 1 ≤ x < 4 0, 4≤x≤5arrow_forwardis g(x) = x^4 + x -2 contraction on [0;2]?arrow_forwardConsider the steady state temperature problem over the disk of radius 3 centered at the origin. ▼²u(r, 0) = 0 subject to the following boundary condition: u(3,0) = f(0) = 4 sin³ (0) + 4 cos³ (0) (a) Find u(r, 0). Please go straight to the final formula for u(r, 0); do not show the separation of variables process. You need to show all details of integration or superposition (if it applies) for credit. (b) Approximate numerically u(3/2,π/4).arrow_forward(a) If X is a normal N(2,64) distribution, find k such that P(k ≤ X ≤12) = 0.2957 (b) The random variable T follows a t-distribution with 14 degrees of freedom. Find k such that P(-0.54arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
2.1 Introduction to inequalities; Author: Oli Notes;https://www.youtube.com/watch?v=D6erN5YTlXE;License: Standard YouTube License, CC-BY
GCSE Maths - What are Inequalities? (Inequalities Part 1) #56; Author: Cognito;https://www.youtube.com/watch?v=e_tY6X5PwWw;License: Standard YouTube License, CC-BY
Introduction to Inequalities | Inequality Symbols | Testing Solutions for Inequalities; Author: Scam Squad Math;https://www.youtube.com/watch?v=paZSN7sV1R8;License: Standard YouTube License, CC-BY