Concept explainers
Most important in an investigation of an airplane crash by the U.S. National Transportation Safety Board is the data stored on the airplane’s flight-data recorder, commonly called the “black box” in spite of its orange coloring and reflective tape. The recorder is engineered to withstand a crash with an average deceleration of magnitude 3400g during a time interval of 6.50 ms. In such a crash, if the recorder and airplane have zero speed at the end of that time interval, what is their speed at the beginning of the interval?
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Conceptual Integrated Science
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
University Physics Volume 3
Physics: Principles with Applications
The Cosmic Perspective Fundamentals (2nd Edition)
Tutorials in Introductory Physics
- The driver of a car is initially moving at a constant speed of 70.4 km/h when a traffic light turns red. If a 0.520 s reaction time is required before the brakes can be applied, what is the distance in meters traveled by the car before it begins to slow down?arrow_forwardAmtrak's 20th-Century Limited is en route from Chicago to New York at 120 km/h when the engineer spots a cow on the track. The train brakes to a halt in 1.5 min , stopping just in front of the cow. What is the magnitude of the train's acceleration?arrow_forwardThe engineer of an intercity train observes a rock slide blocking the train's path 550 m ahead and activates the train's emergency brakes. The train decelerates uniformly (Hint: negative acceleration) at 1.7 m/s and completely stopes just before hitting the rock. What is the initial speed of the train measured in m/s?arrow_forward
- An ambulance driver is rushing a patient to the hospital. While traveling at 71.1 km/h, she notices the traffic light at the upcoming intersection has turned yellow. To reach the intersection before the light turns red, she must travel 52 m in 2.17 seconds. What is the magnitude of the minimum acceleration, in m/s2, required to reach the intersection before the light turns red?arrow_forwardThe hare is sleeping at a location that is 1200 m from the finish line. The tortoise passes him at a steady speed of 5.0 cm/s. If the hare finally wakes up 6.5 hours later, then what minimum acceleration (assumed constant) must he have in order to pass the tortoise before the finish line.arrow_forwardNow let’s apply our definition of average velocity to a swimming competition. During one heat of a swim meet, a swimmer performs the crawl stroke in a pool 50.0 mm long, as shown in (Figure 1). She swims a length at racing speed, taking 24.0 ss to cover the length of the pool. She then takes twice that time to swim casually back to her starting point. Find (a) her average velocity for each length and (b) her average velocity for the entire swim. c) If the swimmer could cross a 15 kmkm channel maintaining the same average velocity as for the first 50 mm in the pool, how long would it take?arrow_forward
- On February 15, 2013, a superbolide meteor (brighter than the Sun) entered Earth's atmosphere over Chelyabinsk, Russia, and exploded at an altitude of 25.75km. Eyewitnesses could feel the intense heat from the fireball, and the blast wave from the explosion blew out windows in buildings. The blast wave took approximately 5minutes 30 seconds to reach ground level. (a) What was the average velocity of the blast wave? b) Compare this with the speed of sound, which is 343 m/s at sea level.arrow_forwardA human-powered vehicle (HPV) team wants to model the acceleration during the 260-m sprint race (the first 60 m is called a flying start) using a = A – Cv, where a is acceleration in m/s2? and v is the velocity in m/s. From wind tunnel testing, they found that C = 0.0012 m-1. Knowing that the cyclist starts from rest and is going 110 km/h at the 260-meter mark, what is the value of A? POSE HULMANarrow_forwardA Lockheed Martin F-35 Lightning II jet takes off from an aircraft carrier with a runway length of 107 m and a takeoff speed 77 m/s at the end of the runway. Jets are catapulted into airspace from the deck of an aircraft carrier with two sources of propulsion: the jet propulsion and the catapult. At the point of leaving the deck of the aircraft carrier, the F-35's acceleration decreases to a constant acceleration of 4.8 m/s2 at 23° with respect to the horizontal. (Assume that the F-35's initial direction along the deck of the aircraft carrier is the +x-direction and that the +y-direction is up.) What is its velocity and speed at this time? (Enter your answers in m/s.) v(5.4 s)= (?î +?ĵ) v(5.4 s)= ? m/s How far (in m) has it traveled horizontally?arrow_forward
- Please answer all question parts: A Lockheed Martin F-35 Lightning II jet takes off from an aircraft carrier with a runway length of 97 m and a takeoff speed 72 m/s at the end of the runway. Jets are catapulted into airspace from the deck of an aircraft carrier with two sources of propulsion: the jet propulsion and the catapult. At the point of leaving the deck of the aircraft carrier, the F-35's acceleration decreases to a constant acceleration of 4.3 m/s2 at 33° with respect to the horizontal. (Assume that the F-35's initial direction along the deck of the aircraft carrier is the +x-direction and that the +y-direction is up.) (a) What is the initial acceleration (in m/s2) of the F-35 on the deck of the aircraft carrier to make it airborne? (Enter the magnitude.) (b) Write the position (in m) and velocity (in m/s) of the F-35 in unit vector notation from the point it leaves the deck of the aircraft carrier. (Use the following as necessary: t.) (c) At what altitude (in m) is…arrow_forwardNerve impulses in a human body travel at a speed of about 100 m/s. Suppose a woman accidentally steps barefoot on a thumbtack. About how much time does it take the nerve impulse to travel from the foot to the brain (in s)? Assume the woman is 1.80 m tall and the nerve impulse travels at uniform speed.arrow_forwardA Lockheed Martin F-35 Lightning II jet takes off from an aircraft carrier with a runway length of 97 m and a takeoff speed 72 m/s at the end of the runway. Jets are catapulted into airspace from the deck of an aircraft carrier with two sources of propulsion: the jet propulsion and the catapult. At the point of leaving the deck of the aircraft carrier, the F-35's acceleration decreases to a constant acceleration of 4.3 m/s2 at 33° with respect to the horizontal. (Assume that the F-35's initial direction along the deck of the aircraft carrier is the +x-direction and that the +y-direction is up.) (c) At what altitude (in m) is the fighter 5.4 s after it leaves the deck of the aircraft carrier? (d) What is its velocity and speed at this time? (Enter your answers in m/s.) (e) How far (in m) has it traveled horizontally?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON