Numerical Methods For Engineers, 7 Ed
Numerical Methods For Engineers, 7 Ed
7th Edition
ISBN: 9789352602131
Author: Canale Chapra
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 19, Problem 6P

Construct amplitude and phase line spectra for Prob. 19.4.

Expert Solution & Answer
Check Mark
To determine

To graph: The amplitude and phase line spectra for the sawtooth wave as shown in the following figure,

Numerical Methods For Engineers, 7 Ed, Chapter 19, Problem 6P , additional homework tip  1

Explanation of Solution

Given Information: The sawtooth wave given in the following figure,

Numerical Methods For Engineers, 7 Ed, Chapter 19, Problem 6P , additional homework tip  2

Formula used:

Consider f(t) is a periodic function with period T defined in the interval 0xT

then the Fourier series expansion of the function,

f(t)=a0+k=1[akcos(kω0t)+bksin(kω0t)] with ω0=2πT.

And the coefficients are defined by,

a0=1T0Tf(t)dt;ak=2T0Tf(t)cos(kω0t)dt;bk=2T0Tf(t)sin(kω0t)dt

Alternatively, the Fourier series can also be written as, f(t)=a0+k=1[ckcos(kω0tϕk)]

Here, the amplitude ck and phase ϕk for each term is defined as,

ck2=ak2+bk2,ϕk=tan1(bkak)

Plot ck and ϕk in the frequency domain to plot the amplitude and phase line spectra.

Graph:

Consider the sawtooth wave given in the following figure,

Numerical Methods For Engineers, 7 Ed, Chapter 19, Problem 6P , additional homework tip  3

Therefore, the sawtooth wave is a periodic function f(t) with period T in the interval 0tT and from the graph,

f(t) is a straight line joining the points (0,0) and (T2,1) in 0tT2.

f(t) is a straight line joining the points (T2,1) and (T,0) in T2tT.

Therefore, the sawtooth wave,

f(t)={2Tt0tT222TtT2tT

Therefore, the Fourier series expansion of this function is,

f(t)=a0+k=1[akcos(kω0t)+bksin(kω0t)];ω0=2πT

In the above expression, the coefficients are defined by,

Now, find ak.

ak=2T0Tf(t)cos(2kπTt)dt=2T0T2(2Tt)cos(2kπTt)dt+2TT2T(22Tt)cos(2kπTt)dt=4T20T2tcos(2kπTt)dt+4TT2Tcos(2kπTt)dt4T2T2Ttcos(2kπTt)dt

Consider,

I=tcos(2kπTt)dt=tcos(2kπTt)dt{ddt(t)cos(2kπTt)dt}dt=tT2kπsin(2kπTt)T2kπsin(2kπTt)dt=Tt2kπsin(2kπTt)+T24k2π2cos(2kπTt)

Hence,

0T2tcos(2kπTt)dt=[Tt2kπsin(2kπTt)+T24k2π2cos(2kπTt)]0T2=T2kπT2sin(2kπTT2)+T24k2π2cos(2kπTT2)T24k2π2cos(0)=T24kπsin(kπ)+T24k2π2cos(kπ)T24k2π2=T24k2π2(1)kT24k2π2

Further,

T2Tcos(2kπTt)dt=T2kπsin(2kπTt)|T2T=T2kπ{sin(2kπ)sin(kπ)}=0

T2Ttcos(2kπTt)dt=[Tt2kπsin(2kπTt)+T24k2π2cos(2kπTt)]T2T=T22kπsin(2kπ)+T24k2π2cos(2kπ)T24kπsin(kπ)T24k2π2cos(kπ)=T24k2π2T24k2π2(1)k

Therefore,

ak=4T2[T24k2π2(1)kT24k2π2]+4T×04T2[T24k2π2T24k2π2(1)k]=1k2π2(1)k+1k2π21k2π2+1k2π2(1)k=0

Now, find bk.

bk=2T0Tf(t)sin(2kπTt)dt=2T0T2(2Tt)sin(2kπTt)dt+2TT2T(22Tt)sin(2kπTt)dt=4T20T2tsin(2kπTt)dt+4TT2Tsin(2kπTt)dt4T2T2Ttsin(2kπTt)dt

Consider,

I=tsin(2kπTt)dt=tsin(2kπTt)dt{ddt(t)sin(2kπTt)dt}dt=tT2kπcos(2kπTt)+T2kπcos(2kπTt)dt=Tt2kπcos(2kπTt)+T24k2π2sin(2kπTt)

Hence,

0T2tsin(2kπTt)dt=[Tt2kπcos(2kπTt)+T24k2π2sin(2kπTt)]0T2=T24kπcos(kπ)+T24k2π2sin(kπ)=T24kπ(1)k

T2Tsin(2kπTt)dt=T2kπcos(2kπTt)|T2T=T2kπcos(2kπ)+T2kπcos(kπ)=T2kπ+T2kπ(1)k

Further,

T2Ttsin(2kπTt)dt=[Tt2kπcos(2kπTt)+T24k2π2sin(2kπTt)]T2T=T22kπcos(2kπ)+T24k2π2sin(2kπ)+T24kπcos(kπ)T24k2π2sin(kπ)=T22kπ+T24kπ(1)k

Thus,

bk=4T2[T24kπ(1)k]+4T[T2kπ+T2kπ(1)k]4T2[T22kπ+T24kπ(1)k]=1kπ(1)k2kπ+2kπ(1)k+2kπ1kπ(1)k=2kπ(1)k

Hence, the coefficients of the Fourier series expansions are,

a0=0,ak=0,bk=2kπ(1)k

That is,

bk={2kπ>0k even2kπ<0k odd

Consider,

ck=ak2+bk2=0+4k2π2(1)2k=4k2π2=2kπ

Thus, the amplitude of the kth term is 2kπ, that is, the amplitudes for k=1,2,3,4,5,... are,

2π,1π,23π,12π,25π,...

Furthermore, consider,

ϕk=tan1(bkak)

As ak=0 and bk>0 for even k thus,

ϕk=π2

As ak=0 and bk<0 for odd k thus,

ϕk=π2

Therefore,

ϕk={π2k evenπ2k odd

Thus, the phases corresponding to k=1,2,3,4,5,... are π2,π2,π2,π2,π2,...

Use the following MATLAB code to construct the amplitude plot.

function Code_97924_19_6P_a()

for k = 1: 8

f(k) = k;

% define the amplitude

A(k) = 2/(k*pi);

end

% plot the values thus obtained

stem(f,A,'filled','LineWidth',4,'Color','k','Marker', 'none');

% define geometric properties

set(gca,'XTickLabel',{' ' 'f_0' 'f_1' 'f_2' 'f_3' 'f_4' 'f_5' 'f_6' 'f_7'});

set(gca,'YTick',[A(8) A(4) A(2) A(1)]);

set(gca,'YTickLabel',{'1/4\pi' '1/2\pi' '1/\pi' '2/\pi'});

set(gca,'Fontname','Times New Roman','FontSize',12);

xlim([0, 9]); grid on

end

Execute the above code to obtain the amplitude plot as,

Numerical Methods For Engineers, 7 Ed, Chapter 19, Problem 6P , additional homework tip  4

Interpretation: The above plot shows the amplitude plot for the sawtooth wave as shown in the figure provided.

Use the following MATLAB file can be used to construct the phase plot.

function Code_97924_19_6P_b()

for k = 1: 8

f(k) = k;

% define the phase

P(k) = (-1)^k*(pi/2);

end

% plot the values thus obtained

stem(f,P,'filled','LineWidth',4,'Color','k','Marker', 'none');

% define geometric properties

set(gca,'XTickLabel',{' ' 'f_0' 'f_1' 'f_2' 'f_3' 'f_4' 'f_5' 'f_6' 'f_7'});

set(gca,'YTick',[-pi -pi/2 0 pi/2 pi]);

set(gca,'YTickLabel',{'-\pi' '-\pi/2' '0' '\pi/2' '\pi'});

set(gca,'Fontname','Times New Roman','FontSize',12);

xlim([0, 9]); grid on

ylim([-pi-0.1, pi+0.1]); grid on

end

Execute the above code to obtain the plot as,

Numerical Methods For Engineers, 7 Ed, Chapter 19, Problem 6P , additional homework tip  5

Interpretation: The above plot shows the phase line spectra for the sawtooth wave as shown in the figure provided.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
C Fill the correct answer in the blank space 1 The center of mass fem for three unit mass particles system equal: ... 2 The vector bi + 3j - k is perpendicular to the vector i + 2j-3k, then value of (b) is *** 3 If the damping frequency is wo/2 and the applied frequency is wo/4. Then tan of the phase angle equals; .... 4 Lagrangian approach is based on 5 Inertial term due to ............. of coordinate system. 6 A planet become faster in orbit around the sun when the sun.
Q5:- Fill the following blanks with suitable words. (a) The accelerometer must have... (b) The dissipation of energy in structural damping is hysteresis loop in the form of ....natural frequency. (c) Simple harmoni motion can be represented by an exponential function with... ....exponent. (d) The seismograph must have.. .natural frequency.
Q.5 The rotating unbalance of a 185 kg machine is 0.65 kg.m. The machine is paced at the midspan of a 2.5-m-long simply supported beam. The machine operates at a speed of 1480 rpm. The beam has an elastic modulus of 210 x 10 N/m² and a second moment of area of 2.3x10 m (a) What is the steady-state amplitude of the primary system without an absorber? (b) Design the dynamic vibration absorber of minimum mass such that, when attached to the midspan of the beam, the vibrations of the beam will cease and the steady-state amplitude of the absorber will be less than 2 cm. (25%)
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY