College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 31PE
A research Van de Graaff generator has a 2.00-rn- diameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface? (b) At what distance from its center is the potential 1.00 MV? (C) An oxygen atom with three missing electrons is released near the Van de Graatf generator. What is its energy in MeV at this distance?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A research-level Van de Graaff generator has a 1.95 m diameter metal sphere with a charge of 5.25 mC on it.
An oxygen atom with two missing electrons is released from rest near the Van de Graaff generator. What is its kinetic energy in MeV at the distance of 47.25m?
A research Van de Graaff generator has a 2.00-mdiameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface? (b) At what distance from its center is the potential 1.00 MV? (c) An oxygen atom with three missing electrons is released near the Van deGraaff generator. What is its energy in MeV at this distance?
A research Van de Graaff generator has a 2.00-m- diameter metal sphere with a charge of 5.00 mC on it.
(a) What is the potential near its surface? (b) At what distance from its center is the potential 1.00 MV?
(c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV at this distance?
Chapter 19 Solutions
College Physics
Ch. 19 - Voltage is the common word for potential...Ch. 19 - It the voltage between two points is zero, can a...Ch. 19 - What is the relationship between voltage and...Ch. 19 - Voltages are always measured between two points....Ch. 19 - How are units of volts and electron volts related?...Ch. 19 - Discuss how potential difference and electric...Ch. 19 - What is the strength of the electric field in a...Ch. 19 - Will a negative charge, initially at rest, move...Ch. 19 - In what region of space is the potential due to a...Ch. 19 - Can the potential of a non-uniformly charged...
Ch. 19 - What is an equipotential line? What is an...Ch. 19 - Explain in your own words why equipotential lines...Ch. 19 - Can different equipotential lines cross? Explain.Ch. 19 - Does the capacitance of a device depend on the...Ch. 19 - Use the characteristics of the of the Coulomb...Ch. 19 - Give the reason why a dielectric material...Ch. 19 - How does the polar character of water molecules...Ch. 19 - Sparks will occur between the plates of an air...Ch. 19 - Water has a large dielectric constant, but it is...Ch. 19 - Membranes ii living cells, including those in...Ch. 19 - If you wish to store a large amount of energy m a...Ch. 19 - How does the energy contained in a charged...Ch. 19 - What happens to the energy stored in a capacitor...Ch. 19 - Find the ratio of speeds of an electron and a...Ch. 19 - An evacuated tube uses an accelerating voltage of...Ch. 19 - A bare helium nucleus has two positive charges and...Ch. 19 - Integrated Concepts Singly charged gas ions are...Ch. 19 - Integrated Concepts The temperature near the...Ch. 19 - Integrated Concepts (a) What is the average power...Ch. 19 - Integrated Concepts A lightning bolt strikes a...Ch. 19 - Integrated Concepts: A 12.0 V battery-operated...Ch. 19 - Integrated Concepts A battery-operated car...Ch. 19 - Integrated Concepts Fusion probability is greatly...Ch. 19 - Unreasonable Results (a) Find the voltage near a...Ch. 19 - Construct Your Own Problem Consider a battery used...Ch. 19 - Show that units of Vim and N/C for electric field...Ch. 19 - What is the strength of the electric field between...Ch. 19 - The electric field strength between two parallel...Ch. 19 - How far apart are two conducting plates that have...Ch. 19 - (a) Will the electric field strength between two...Ch. 19 - The voltage across a membrane forming a cell wall...Ch. 19 - Membrane walls of living cells have surprisingly...Ch. 19 - Two parallel conducting plates are separated by...Ch. 19 - Find the maximum potential difference between two...Ch. 19 - A doubly charged ion is accelerated to an energy...Ch. 19 - An electron is to be accelerated in a uniform...Ch. 19 - A 0.500 cm diameter plastic sphere, used in a...Ch. 19 - What is the potential 0.530 x 10-10 m from a...Ch. 19 - (a) A sphere has a surface uniformly charged with...Ch. 19 - How far from a 1.00 C point charge will the...Ch. 19 - What are the sign and magnitude of a point charge...Ch. 19 - If the potential due to a point charge is 5.00 102...Ch. 19 - In nuclear fission. a nucleus splits roughly in...Ch. 19 - A research Van de Graaff generator has a 2.00-rn-...Ch. 19 - An electrostatic paint sprayer has a...Ch. 19 - In one of the classic nuclear physics experiments...Ch. 19 - (a) What is the potential between two points...Ch. 19 - Unreasonable Results (a) What is the final speed...Ch. 19 - (a) Sketch the equipotential lines near a point...Ch. 19 - Sketch the equipotential lines for the two equal...Ch. 19 - Figure 19.28 shows the electric field lines near...Ch. 19 - Sketch the equipotential lines a long distance...Ch. 19 - Sketch the equipotential lines in the vicinity of...Ch. 19 - Sketch the equipotential lines in the vicinity of...Ch. 19 - Sketch the equipotential lines surrounding the two...Ch. 19 - (a) Sketch the electric field lines in the...Ch. 19 - The naturally occurring charge on the ground on a...Ch. 19 - The lesser electric ray (Narcine bancroftii)...Ch. 19 - What charge is stored in a 180 F capacitor when...Ch. 19 - Find the charge stored when 5.50 V is applied to...Ch. 19 - What charge is stored in the capacitor in Example...Ch. 19 - Calculate the voltage applied to a 2.00 F...Ch. 19 - What voltage must be applied to an 8.00 nF...Ch. 19 - What capacitance is needed to store 3.00 C of...Ch. 19 - What is the capacitance of a large Van de Graaff...Ch. 19 - Find the capacitance of a parallel plate capacitor...Ch. 19 - (a) What is the capacitance of a parallel plate...Ch. 19 - Integrated Concepts A prankster applies 450 V to...Ch. 19 - Unreasonable Results (a) A certain parallel plate...Ch. 19 - Find the total capacitance of the combination of...Ch. 19 - Suppose you want a capacitor bank with a total...Ch. 19 - What total capacitances can you make by connecting...Ch. 19 - Find the total capacitance of the combination of...Ch. 19 - Find the total capacitance of the combination of...Ch. 19 - Unreasonable Results (a) An 8.00 F capacitor is...Ch. 19 - (a) What is the energy stored in the 10.0 F...Ch. 19 - In open heart surgery. a much smaller amount of...Ch. 19 - A 165 F capacitor is used in conjunction with a...Ch. 19 - Suppose you have a 9.00 V battery, a 2.00 F...Ch. 19 - A nervous physicist worries that the two metal...Ch. 19 - Show that for a given dielectric material the...Ch. 19 - Construct Your Own Problem Consider a heart...Ch. 19 - Unreasonable Results (a) On a particular day, it...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
1. A person gets in an elevator on the ground floor and rides it to the top floor of a building. Sketch a veloc...
College Physics: A Strategic Approach (4th Edition)
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
21.41 Three negative point charges lie along a line as shown in Fig. E21.41. Find the magnitude and direction o...
University Physics with Modern Physics (14th Edition)
An elevator suspended by a cable is descending at constant velocity. How many force vector would be shown on ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many electrons should be removed from an initially uncharged spherical conductor of radius 0.300 m to produce a potential of 7.50 kV at the surface?arrow_forward(a) Find the potential difference VB required to stop an electron (called a slopping potential) moving with an initial speed of 2.85 107 m/s. (b) Would a proton traveling at the same speed require a greater or lesser magnitude potential difference? Explain. (c) Find a symbolic expression for the ratio of the proton stopping potential and the electron stopping potential, Vp/Ve. The answer should be in terms of the proton mass mp and electron mass me.arrow_forwardA research Vail de Graaff generator has a 2.00-m- diameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface? (b) At what distance from its center is the potential 1.00 MV? (c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV when the atom is at the distance found in part b?arrow_forward
- In nuclear fission, a nucleus splits roughly in half, (a) What is the potential 2.001014 in from a fragment that has 46 protons in it? (b) What is the potential energy in MeV of a similarly charged fragment at this distance?arrow_forwardAn election enters a region between two large parallel plates made of aluminum separated by a distance of 2.0 cm and kept at a potential difference of 200 V. The electron enters through a small hole in the negative plate and moves toward the positive plate. At the time the electron is near the negative plate, its speed is 4.0103 m/s. Assume the electric field between the plates to be uniform, and find the speed of electron at (a) 0.10 cm, (b) 0.50 cm, (c) 1.0 cm, and (d) 1.5 cm from the negative plate, and (e) immediately before it hits the positive plate.arrow_forwardAn electric potential exists in a region of space such that V = 8x4 2y2 + 9z3 and V is in units of volts, when x, y, and z are in meters. a. Find an expression for the electric field as a function of position. b. What is the electric field at (2.0 m, 4.5 m, 2.0 m)?arrow_forward
- The charge density on a disk of radius R = 12.0 cm is given by = ar, with a = 1.40 C/m3 and r measured radially outward from the origin (Fig. P26.45). What is the electric potential at point A, a distance of 40.0 cm above the disk? Hint: You will need to integrate the nonuniform charge density to find the electric potential. You will find a table of integrals helpful for performing the integration.arrow_forwardIn nuclear fission. a nucleus splits roughly in half. (a) What is the potential 2.00 10-14 m from a fragment that has 46 protons in it? (b) What is the potential energy in MeV of a similarly charged fragment at this distance?arrow_forward(a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graff terminal? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forward
- A research Van de Graaff generator has a 2.00-mdiameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface? (b) At what distance from its center is the potential 1.00 MV? (c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV when the atom is at the distance found in part b?arrow_forwardA research Van de Graaff generator has a 2.70 m diameter metal sphere with a charge of 1.11 mC on it. (a) What is the electric potential on the surface of the sphere? (b) At what distance from its center is the potential 3.00 MV? (c) An oxygen atom with three missing electrons is released near the surface of the Van de Graaff generator. What is its kinetic energy in MeV at the distance determined in part (b)? (units: MeV)arrow_forwardA research Van de Graaff generator has a 3.40 m diameter metal sphere with a charge of 1.02 mC on it. (a) What is the electric potential on the surface of the sphere? (b) At what distance from its center is the potential 1.00 MV? m (c) An oxygen atom with three missing electrons is released near the surface of the Van de Graaff generator. What is its kinetic energy in MeV at the distance determined in part (b)? MeVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY