Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 30P
(II) A 1.0-L volume of air initially at 3.5 atm of (absolute) pressure is allowed to expand isothermally until the pressure is 1.0 atm. It is then compressed at constant pressure to its initial volume, and lastly is brought back to its original pressure by heating at constant volume. Draw the process on a PV diagram, including numbers and labels for the axes.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4 moles of an ideal gas undergoes isothermal expansion along
1) reversible expansion from Pi =25.0 bar v i= 4.50 l and to PF = 4.50 calculate the work done for this process
1.)In a given experiment, we want to study the expansion of a gas from state i to state f by three different paths in the pV diagram. Based on the following figure, where the pressure is indicated in atmospheres and the volume in liters, determine the work done by the gas, in joules:
(a) Along the path iaf
(b) Along the path if.
(c) Along path ibf.
(d) A piston-cylinder device initially contains 0.4 m³ of air at 115 kPa and 90°C.
The air is now compressed to 0.1 m³ remaining at constant temperature.
Assume that the process is quasi-equilibrium.
(i)
Sketch the P-V diagram of the process.
(ii)
Determine the work done during this process.
Chapter 19 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 19.2 - Return to the Chapter-Opening Question, page 496,...Ch. 19.5 - Prob. 1BECh. 19.5 - How much more ice at 10C would be needed in...Ch. 19.6 - What would be the internal energy change in...Ch. 19.7 - Is the work done by the gas in process ADB of Fig....Ch. 19.7 - In Example 1910, if the heat lost from the gas in...Ch. 19.10 - Fanning yourself on a hot day cools you by (a)...Ch. 19 - What happens to the work done on a jar of orange...Ch. 19 - Prob. 2QCh. 19 - Prob. 3Q
Ch. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Why does water in a canteen stay cooler if the...Ch. 19 - Explain why burns caused by steam at 100C on the...Ch. 19 - Prob. 8QCh. 19 - Will potatoes cook faster if the water is boiling...Ch. 19 - Prob. 10QCh. 19 - Prob. 11QCh. 19 - Use the conservation of energy to explain why the...Ch. 19 - In an isothermal process, 3700 J of work is done...Ch. 19 - Explorers on failed Arctic expeditions have...Ch. 19 - Why is wet sand at the beach cooler to walk on...Ch. 19 - When hot-air furnaces are used to heat a house,...Ch. 19 - Is it possible for the temperature of a system to...Ch. 19 - Discuss how the first law of thermodynamics can...Ch. 19 - Explain in words why CP is greater than CV.Ch. 19 - Prob. 20QCh. 19 - An ideal monatomic gas is allowed to expand slowly...Ch. 19 - Ceiling fans are sometimes reversible, so that...Ch. 19 - Goose down sleeping bags and parkas are often...Ch. 19 - Microprocessor chips nowadays have a heat sink...Ch. 19 - Sea breezes are often encountered on sunny days at...Ch. 19 - The Earth cools off at night much more quickly...Ch. 19 - Explain why air-temperature readings are always...Ch. 19 - A premature baby in an incubator can be...Ch. 19 - Prob. 29QCh. 19 - A 22C day is warm, while a swimming pool at 22C...Ch. 19 - Prob. 32QCh. 19 - Prob. 33QCh. 19 - Prob. 34QCh. 19 - Prob. 35QCh. 19 - An emergency blanket is a thin shiny...Ch. 19 - Explain why cities situated by the ocean tend to...Ch. 19 - (I) To what temperature will 8700 J of heat raise...Ch. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - (II) A British thermal unit (Btu) is a unit of...Ch. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - (I) An automobile cooling system holds 18 L of...Ch. 19 - Prob. 8PCh. 19 - (II) (a) How much energy is required to bring a...Ch. 19 - Prob. 10PCh. 19 - Prob. 11PCh. 19 - (II) A hot iron horseshoe (mass = 0.40kg), just...Ch. 19 - (II) A 31.5-g glass thermometer reads 23.6C before...Ch. 19 - Prob. 14PCh. 19 - (II) When a 290-g piece of iron at 180C is placed...Ch. 19 - (II) The heat capacity. C, of an object is defined...Ch. 19 - (II) The 1.20-kg head of a hammer has a speed of...Ch. 19 - (I) How much heat is needed to melt 26.50kg of...Ch. 19 - (I) During exercise, a person may give off 180...Ch. 19 - (II) A 35g ice cube at its melting point is...Ch. 19 - (II) High-altitude mountain climbers do not eat...Ch. 19 - (II) An iron boiler of mass 180 kg contains 730kg...Ch. 19 - (II) In a hot days race, a bicyclist consumes 8.0...Ch. 19 - (II) The specific heat of mercury is 138 J/kg C....Ch. 19 - Prob. 25PCh. 19 - (II) A 58-kg ice-skater moving at 7.5 m/s glides...Ch. 19 - (I) Sketch a PV diagram of the following process:...Ch. 19 - (I) A gas is enclosed in a cylinder fitted with a...Ch. 19 - (II) The pressure in an ideal gas is cut in half...Ch. 19 - (II) A 1.0-L volume of air initially at 3.5 atm of...Ch. 19 - (II) Consider the following two-step process. Heat...Ch. 19 - (II) The PV diagram in Fig. 1931 shows two...Ch. 19 - (II) Suppose 2.60 mol of an ideal gas of volume V1...Ch. 19 - (II) In an engine, an almost ideal gas is...Ch. 19 - (II) One and one-half moles of an ideal monatomic...Ch. 19 - (II) Determine (a) the work done and (b) the...Ch. 19 - (II) How much work is done by a pump to slowly...Ch. 19 - (II) When a gas is taken from a to c along the...Ch. 19 - (III) In the process of taking a gas from state a...Ch. 19 - (III) Suppose a gas is taken clockwise around the...Ch. 19 - (III) Determine the work done by 1.00 mol of a van...Ch. 19 - (I) What is the internal energy of 4.50 mol of an...Ch. 19 - Prob. 43PCh. 19 - Prob. 44PCh. 19 - Prob. 45PCh. 19 - What gas is it? (II) Show that the work done by n...Ch. 19 - (II) An audience of 1800 fills a concert hall of...Ch. 19 - Prob. 48PCh. 19 - Prob. 49PCh. 19 - (III) A 1.00-mol sample of an ideal diatomic gas...Ch. 19 - (I) A 1.00-mol sample of an ideal diatomic gas,...Ch. 19 - (II) Show, using Eqs. 196 and 1915, that the work...Ch. 19 - (III) A 3.65-mol sample of an ideal diatomic gas...Ch. 19 - (II) An ideal monatomic gas, consisting of 2.8 mol...Ch. 19 - (III) A 1.00-mol sample of an ideal monatomic gas,...Ch. 19 - (III) Consider a parcel of air moving to a...Ch. 19 - Prob. 57PCh. 19 - (I) One end of a 45-cm-long copper rod with a...Ch. 19 - (II) How long does it take the Sun to melt a block...Ch. 19 - (II) Heat conduction to skin. Suppose 150 W of...Ch. 19 - (II) A ceramic teapot ( = 0.70) and a shiny one (...Ch. 19 - (II) A copper rod and an aluminum rod of the same...Ch. 19 - Prob. 63PCh. 19 - Prob. 64PCh. 19 - (III) A house thermostat is normally set to 22C,...Ch. 19 - (III) Approximately how long should it take 9.5 kg...Ch. 19 - (III) A cylindrical pipe has inner radius R1 and...Ch. 19 - (III) Suppose the insulating qualities of the wall...Ch. 19 - Prob. 69GPCh. 19 - (a) Find the total power radiated into space by...Ch. 19 - Prob. 71GPCh. 19 - A mountain climber wears a goose-down jacket 3.5...Ch. 19 - Prob. 73GPCh. 19 - Estimate the rate at which heat can he conducted...Ch. 19 - A marathon runner has an average metabolism rate...Ch. 19 - A house has well-insulated walls 19.5 cm thick...Ch. 19 - In a typical game of squash (Fig. 19-36), two...Ch. 19 - A bicycle pump is a cylinder 22 cm long and 3.0 cm...Ch. 19 - Prob. 79GPCh. 19 - The temperature within the Earths crust increases...Ch. 19 - An ice sheet forms on a lake. The air above the...Ch. 19 - An iron meteorite melts when it enters the Earths...Ch. 19 - A scuba diver releases a 3.60-cm-diameter...Ch. 19 - A reciprocating compressor is a device that...Ch. 19 - The temperature of the glass surface of a 75-W...Ch. 19 - Suppose 3.0 mol of neon (an ideal monatomic gas)...Ch. 19 - At very low temperatures, the molar specific heat...Ch. 19 - A diesel engine accomplishes ignition without a...Ch. 19 - When 6.30 105 J of heat is added to a gas...Ch. 19 - In a cold environment, a person can lose heat by...Ch. 19 - Prob. 91GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
One of the longest-standing athletic records is Cuban Javier Sotomayors 2.45-m high jump. How high could Sotoma...
Essential University Physics: Volume 1 (3rd Edition)
Find all three currents in the circuit of Fig. 25.13, but now with 2 = 1.0 V. FIGURE 25.13 Example 25.4
Essential University Physics: Volume 2 (3rd Edition)
60491-23-28RCQ AID: 1825 | 16/3/20...
Conceptual Physical Science (6th Edition)
Relate the green house effect to global warming.
Conceptual Integrated Science
22. Why are residents of northern Canada less shielded from cosmic rays than are residents of Mexico?
College Physics
The line (red or blue) that represents a base that is being neutralized by an acid.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A car tile contains 0.0380 m3 of air at a pressure of 2.20105 Pa (about 32 psi). How much more internal energy does this gas have than the same volume has at zero gauge pressure (which is equivalent to normal atmospheric pressure)?arrow_forwardA monatomic ideal gas undergoes a quasi-static adiabatic expansion in which its volume is doubled. How is the pressure of the gas changed?arrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases, (d) The internal energy of the gas remains constant, (e) None of those statements is true.arrow_forward
- An ideal gas initially at 300 K undergoes an isobaric expansion at 2.50 kPa. If the volume increases from 1.00 m3 to 3.00 m3 and 12.5 kJ is transferred to the gas by heat, what are (a) the change in its internal energy and (b) its final temperature?arrow_forwardCompare the charge in internal energy of an ideal gas for a quasi-static adiabatic expansion with that for a quasi-static isothermal expansion. What happens to the temperature of an ideal gas in an adiabatic expansion?arrow_forwardAn ideal gas with specific heat ratio confined to a cylinder is put through a closed cycle. Initially, the gas is at Pi, Vi, and Ti. First, its pressure is tripled under constant volume. It then expands adiabatically to its original pressure and finally is compressed isobarically to its original volume. (a) Draw a PV diagram of this cycle. (b) Determine the volume at the end of the adiabatic expansion. Find (c) the temperature of the gas at the start of the adiabatic expansion and (d) the temperature at the end of the cycle. (e) What was the net work done on the gas for this cycle?arrow_forward
- An amount of n moles of a monatomic ideal gas in a conducting container with a movable piston is placed in a large thermal heat bath at temperature T1 and the gas is allowed to come to equilibrium. After the equilibrium is leached, the pressure on the piston is lowered so that the gas expands at constant temperature. The process is continued quasi-statically until the final pressure is 4/3 of the initial pressure p1 . (a) Find the change in the internal energy of the gas. (b) Find the work done by the gas. (c) Find the heat exchanged by the gas, and indicate, whether the gas takes in or gives up heat.arrow_forwardUse a PV diagram such as the one in Figure 22.2 (page 653) to figure out how you could modify an engine to increase the work done.arrow_forwardAs shown below, calculate the work done by the gas in the quasi-static processes represented by the paths (a) AB; (b) ADB; (c) ACB; and (d) ADCB. `arrow_forward
- A Carnot engine employs 1.5 mol of nitrogen gas as a working substance, which is considered as an ideal diatomic gas with =7.5 at the working temperatures of the engine. The Carnot cycle goes in the cycle ABCDA with AB being an isothermal expansion. The volume at points A and C of the cycle are 5.0103 m3 and 0.15 L, respectively. The engine operates between two thermal baths of temperature 500 K 300 K. (a) Find the values of volume at B and D. (b) How much heat is absorbed by the gas in the AB isothermal expansion? (c) How much work is done by the gas in the AB isothermal expansion? (d) How much heat is given up by the gas in the CD isothermal expansion? (e) How much work is done by the gas in the CD isothermal compression? (f) How much work is done by the gas in the BC adiabatic expansion? (g) How much work is done by the gas in the DA adiabatic compression? (h) Find the value of efficiency of the engine based on the net and heat input. Compare this value to the efficiency of a Carnot engine based on the temperatures of the baths.arrow_forwardThere is no change in the internal of an ideal gas undergoing an isothermal process since the internal energy depends only on the temperature. Is it therefore correct to say that an isothermal process is the same as an adiabatic process for an ideal gas? Explain your answer. `arrow_forwardOne mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the initial volume and (b) the temperature of the gas.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY