College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 23MCQ
To determine
The color formed in the cup, card and toy when a red light is passed through it.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 19 - On a sunny summer day, with the sun overhead, you...Ch. 19 - Suppose you have two pinhole cameras. The first...Ch. 19 - A photographer focuses his camera on his subject....Ch. 19 - The object for a magnifier is usually placed very...Ch. 19 - A nature photographer taking a close-up shot of an...Ch. 19 - The CCD detector in a certain camera has a width...Ch. 19 - All humans have what is known as a blind spot,...Ch. 19 - Suppose you wanted special glasses designed to...Ch. 19 - You have lenses with the following focal lengths:...Ch. 19 - An 8-year-old child and a 75-year-old man both use...
Ch. 19 - A friend lends you the eyepiece of his microscope...Ch. 19 - An astronomer is using a telescope to observe two...Ch. 19 - A student makes a microscope using an objective...Ch. 19 - Is the wearer of the glasses in Figure Q19.14...Ch. 19 - Prob. 15CQCh. 19 - A collector notices a rare beetle on a tree 1.0 m...Ch. 19 - A microscope has a tube length of 20 cm. What...Ch. 19 - The distance between the objective and eyepiece of...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A nearsighted person has a near point of 20 cm and...Ch. 19 - A 60-year-old man has a near point of 100 cm,...Ch. 19 - A person looking through a 10 D lens sees an image...Ch. 19 - Prob. 23MCQCh. 19 - An amateur astronomer looks at the moon through a...Ch. 19 - Prob. 1PCh. 19 - A student has built a 20-cm-long pinhole camera...Ch. 19 - A pinhole camera is made from an 80-cm-long box...Ch. 19 - A photographer uses his camera, whose lens has a...Ch. 19 - An older camera has a lens with a focal length of...Ch. 19 - In Figure P19.6 the camera lens has a 50 mm focal...Ch. 19 - a. Estimate the diameter of your eyeball. b. Bring...Ch. 19 - A farsighted person has a near point of 50 cm...Ch. 19 - A nearsighted woman has a far point of 300 cm....Ch. 19 - Martin has severe myopia, with a far point of only...Ch. 19 - Mary, like many older people, has lost all ability...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - Rank the following people from the most...Ch. 19 - The diameter of a penny is 19 mm. How far from...Ch. 19 - A magnifier has a magnification of 4 for someone...Ch. 19 - A magnifier has a magnification of 5. How far from...Ch. 19 - A farsighted man has a near point of 40 cm. What...Ch. 19 - An inexpensive microscope has a tube length of...Ch. 19 - A standard biological microscope is required to...Ch. 19 - A forensic scientist is using a standard...Ch. 19 - A microscope with an 8.0-mm-focal-length objective...Ch. 19 - The distance between the objective and eyepiece...Ch. 19 - For the combination of two identical lenses shown...Ch. 19 - For the combination of two lenses shown in Figure...Ch. 19 - A researcher is trying to shoot a tranquilizer...Ch. 19 - The objective lens of the refracting telescope at...Ch. 19 - You use your 8 binoculars to focus on a...Ch. 19 - Your telescope has a 700-mm-focal-length objective...Ch. 19 - A narrow beam of light with wavelengths from 450...Ch. 19 - Prob. 31PCh. 19 - A ray of red light, for which n = 1.54, and a ray...Ch. 19 - Two lightbulbs are 1.0 m apart. From what distance...Ch. 19 - A 1.0-cm-diameter microscope objective has a focal...Ch. 19 - A microscope with an objective of focal length 1.6...Ch. 19 - Suppose you point a pinhole camera at a 15-m-tall...Ch. 19 - Jason uses a lens with a focal length of 10.0 cm...Ch. 19 - A magnifier is labeled 5. What would its...Ch. 19 - A 20 microscope objective is designed for use in...Ch. 19 - Two converging lenses with focal lengths of 40 cm...Ch. 19 - A converging lens with a focal length of 40 cm and...Ch. 19 - A lens with a focal length of 25 cm is placed 40...Ch. 19 - A microscope with a 5 objective lens images a...Ch. 19 - Prob. 44GPCh. 19 - A 20 objective and 10 eyepiece give an angular...Ch. 19 - The objective lens and the eyepiece lens of a...Ch. 19 - Your telescope has an objective lens with a focal...Ch. 19 - Martha is viewing a distant mountain with a...Ch. 19 - Susan is quite nearsighted; without her glasses,...Ch. 19 - A spy satellite uses a telescope with a...Ch. 19 - Two stars have an angular separation of 3.3 105...Ch. 19 - Frank is nearsighted and his glasses require a...Ch. 19 - What is the angular resolution of the Hubble Space...Ch. 19 - The Hubble Space Telescope has a mirror diameter...Ch. 19 - Once dark adapted, the pupil of your eye is...Ch. 19 - The normal human eye has maximum visual acuity...Ch. 19 - Prob. 57GPCh. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...Ch. 19 - Light that enters your eyes is focused to form an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Equation 24.14 assumes the incident light is in air. If the light is incident from a medium of index n1 onto a medium of index n2, follow the procedure used to derive Equation 24.14 to show that tan p = n2/n1.arrow_forwardEndoscopes are medical instruments used to examine the gastrointestinal tract and other cavities inside the body. The light required for examination is conducted from an outside source along a long, flexible bundle of optical fibers to the tip, where it exits and illuminates the internal cavity. A lens on the lip collects an image of the lighted cavity and another fiber bundle conducts the image back along the endoscope to an eyepiece for viewing (Fig. P22.52). If each fiber in the bundle has diameter d = 1.00 104 m and refractive index n = 1.40, find the smallest outside radius R permitted for a bend in the fiber if no light is to escape. Figure P22.52arrow_forwardA scuba diver training in a pool looks at his instructor as shown in Figure 25.53. What angle does the ray from the instructor’s face make with the perpendicular to the water at the point where the ray enters? The angle between the ray in the water and the perpendicular to the water is 25.0°. Figure 25.53 A scuba diver in a pool and his trainer look at each other.arrow_forward
- A light ray navels from vacuum into a slab of material with index of refraction n1 at incident angle with respect to the surface. It subsequently passes into a second slab of material with index of refraction n2 before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle that the outgoing light makes with the normal? (a) (b) (c) = (d) The angle depends on the magnitudes of n1 and n2. (e) The angle depends on the wavelength of the light.arrow_forwardUnreasonable results Light traveling from water to a gemstone strikes the surface at an angle of 80.00 and has an angle of refraction of 15.2°. (a) What is the speed of light in the gemstone? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardPierre de Fermat (16011665) showed that whenever light travels from one point to another, its actual path is the path that requires the smallest time interval. This statement is known as Fermats principle. The simplest example is for light propagating in a homogeneous medium. It moves in a straight line because a straight line is the shortest distance between two points. Derive Snells law of refraction from Fermats principle. Proceed as follows. In Figure P34.54, a light ray travels from point P in medium 1 to point Q in medium 2. The two points are, respectively, at perpendicular distances a and b from the interface. The displacement from P to Q has the component d parallel to the interface, and we let x represent the coordinate of the point where the ray enters the second medium. Let t = 0 be the instant the light starts from P. (a) Show that the time at which the light arrives at Q is t=r1v1+r2v2=n1a2+x2c+n2b2+(dx)2c (b) To obtain the value of x for which t has its minimum value, differentiate t with respect to x and set the derivative equal to zero. Show that the result implies n1xa2+x2=n2(dx)b2+(dx)2 (c) Show that this expression in turn gives Snells law. n1sin1=n2sin2 Figure P34.54 Problems 54 and 55.arrow_forward
- A man shines a flashlight from a boat into the water, illuminating a rock as in Figure P22.21. What is the angle of incidence 1?arrow_forward14. A ray of light strikes the midpoint of one face of an equiangular (60°−60°−60°) glass prism (n = 1.5) at an angle of incidence of 30°. (a) Trace the path of the light ray through the glass and find the angles of incidence and refraction at each surface. (b) If a small fraction of light is also reflected at each surface, what are the angles of reflection at the surfaces?arrow_forwardA ray of light is incident at an angle 30.0 on a plane slab of flint glass surrounded by water. (a) Find the refraction angle. (b) Suppose the index of refraction of the surrounding medium can be adjusted, but the incident angle of the light remains the same. As the index of refraction of the medium approaches that of the glass, what happens to the refraction angle? (c) What happens to the refraction angle when the mediums index of refraction exceeds that of the glass?arrow_forward
- Light passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared with the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from the normal.arrow_forwardDetermine whether each of the following statements is true (T) or false (F). (a) The angle in Snell's law is measured between the ray and a line perpendicular to the surface. (b) The speed of light in a material increases as the materials index of refraction increases. (c) The ratio v/ of a photons speed to its wavelength has the same value for any index of refraction n. (d) Photons of blue light have a higher energy than photons of red light. (e) A photons energy depends on its brightness.arrow_forwardFigure P22.16 shows a light ray traveling in a slab of crown glass surrounded by air. The ray is incident on the right surface at an angle of 55 with the normal and then reflects from points A. B, and C. (a) At which of these points does part of the ray enter the air? (b) If the glass slab is surrounded by carbon disulfide, at which point does part of the ray enter the carbon disulfide?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning