Student Solutions Manual for Ball's Physical Chemistry, 2nd
Student Solutions Manual for Ball's Physical Chemistry, 2nd
2nd Edition
ISBN: 9798214169019
Author: David W. Ball
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 19, Problem 19.49E
Interpretation Introduction

(a)

Interpretation:

The mean free paths for argon and xenon atoms are to be calculated.

Concept introduction:

The mean free path of collisions between gaseous atoms is given by the formula given below.

λ=kT2πd2p

The average collision frequency of one atom is given by the formula,

z=4πρd2kTπm

The total number of collisions is given by the formula,

Z=2πρ1ρ2[d1+d22]2kTπm

Expert Solution
Check Mark

Answer to Problem 19.49E

The mean free paths for argon and xenon atoms are 1.24×1016m and 5.23×1015m respectively.

Explanation of Solution

The mean free path of collisions between gaseous atoms is given by the formula given below.

λ=kT2πd2p …(1)

Where,

p is the pressure.

T is the temperature.

d is the collision diameter.

k is the Boltzmann constant.

Substitute the values in the equation (1) for argon atom as given below.

λ=kT2πd2p=(1.381×1023J/K)(273K)2×3.14×(2.60A×1010m1A)2×1atm×1Latm101.33J×(0.1m)31L=1.24×1016m

Substitute the values in the equation (1) for xenon atom as given below.

λ=kT2πd2p=(1.381×1023J/K)(273K)2×3.14×(4.00A×1010m1A)2×1atm×1Latm101.33J×(0.1m)31L=5.23×1015m

Conclusion

The mean free paths for argon and xenon atoms are 1.24×1016m and 5.23×1015m respectively.

Interpretation Introduction

(b)

Interpretation:

The average collision frequencies for argon and xenon atoms are to be calculated.

Concept introduction:

The mean free path of collisions between gaseous atoms is given by the formula given below.

λ=kT2πd2p

The average collision frequency of one atom is given by the formula,

z=4πρd2kTπm

The total number of collisions is given by the formula,

Z=2πρ1ρ2[d1+d22]2kTπm.

Expert Solution
Check Mark

Answer to Problem 19.49E

The average collision frequencies for argon and xenon atoms are 15.311×108s-1 and 199.86×107s-1.

Explanation of Solution

The average collision frequency of one atom is given by the formula,

z=4πρd2kTπm …(2)

Where,

ρ is the density.

T is the temperature.

m is the mass of an atom.

d is the collision diameter.

k is the Boltzmann constant.

The mixture given is a 50:50 mixture. Thus, the number of moles of argon and xenon in the mixture is 0.5 each. This gives the density of argon and xenon at STP as follows.

ρxenon=6.022×10230.5×0.001m3×22.4=0.134×1026m3

ρargon=6.022×10230.5×0.001m3×22.4=0.134×1026m3

Substitute the values in the equation (2) for argon atom as given below.

z=4πρd2kTπm=4×3.14×0.134×1026m3×(2.60A×1010m1A)2(1.381×1023J/K)(273K)(6.63×1026kg)(3.14)=15.311×108s1

Substitute the values in the equation (2) for xenon atom as given below.

z=4πρd2kTπm=4×3.14×0.134×1026m3×(4.00A×1010m1A)2(1.381×1023J/K)(273K)(2.18×1025kg)(3.14)=199.86×107s-1

Conclusion

The average collision frequencies for argon and xenon atoms are 15.311×108s1 and 199.86×107s1.

Interpretation Introduction

(c)

Interpretation:

The total number of collisions between argon and xenon atoms is to be calculated.

Concept introduction:

The mean free path of collisions between gaseous atoms is given by the formula given below.

λ=kT2πd2p

The average collision frequency of one atom is given by the formula,

z=4πρd2kTπm

The total number of collisions is given by the formula,

Z=2πρ1ρ2[d1+d22]2kTπm.

Expert Solution
Check Mark

Answer to Problem 19.49E

The total number of collisions between argon and xenon atoms is 37.79×1033m3s1.

Explanation of Solution

The total number of collisions is given by the formula,

Z=2πρ1ρ2[d1+d22]2kTπm …(3)

Where,

ρ is the density.

T is the temperature.

m is the mass of an atom.

d is the collision diameter.

k is the Boltzmann constant.

The mixture given is a 50:50 mixture. Thus, the number of moles of argon and xenon in the mixture is 0.5 each. This gives the density of argon and xenon at STP as follows.

ρxenon=6.022×10230.5×0.001m3×22.4=0.134×1026m3

ρargon=6.022×10230.5×0.001m3×22.4=0.134×1026m3

Substitute the values in the equation (3) as given below.

Z=2πρ1ρ2[d1+d22]2kTπm=(4×3.14×0.134×1026m3×0.134×1026m3×((4.00A× 10 10m1A)+(2.60A× 10 10m1A)2)2×(1.381×1023J/K)(273K))(0.508×1025kg)(3.14)=37.79×1033m3s1

Conclusion

The total number of collisions between argon and xenon atoms is 37.79×1033m3s1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(a) The molecular diameter of helium, He, is 0.225 nm. At 0 °C and 101.325 kPa, calculate the (iv) mean free path, A. (v) collision frequency, ZA. (vi) collision density, Za. 2.
Calculate the collision frequency, z, and the collision density, ZAA, in carbon monoxide, d = 360 pm, at 30 °C and 120 kPa. What is the percentage increase when the temperature is raised by 10 K at constant volume?
The estimated average concentration of NO2 in air is 0.016 ppm. (a) Calculate the partial pressure of the NO2 in a sample of this air when the atmospheric pressure is 755 torr (99.1 kPa). (b) How many molecules of NO2 are present under these conditions at 20 °C in a room that measures 15 x 14 x 8 ft?

Chapter 19 Solutions

Student Solutions Manual for Ball's Physical Chemistry, 2nd

Ch. 19 - Prob. 19.11ECh. 19 - Interstellar space can be considered as having...Ch. 19 - Prob. 19.13ECh. 19 - SF6 is a gas at room temperature, 295K. What is...Ch. 19 - Prob. 19.15ECh. 19 - Prob. 19.16ECh. 19 - If relativistic effects were ignored, what...Ch. 19 - Prob. 19.18ECh. 19 - Prob. 19.19ECh. 19 - Prob. 19.20ECh. 19 - Prob. 19.21ECh. 19 - Prob. 19.22ECh. 19 - Prob. 19.23ECh. 19 - Prob. 19.24ECh. 19 - What is the ratio of vrms/vmostprob for any gas at...Ch. 19 - Prob. 19.26ECh. 19 - Prob. 19.27ECh. 19 - Prob. 19.28ECh. 19 - Prob. 19.29ECh. 19 - Prob. 19.30ECh. 19 - Prob. 19.31ECh. 19 - The previous exercise gives an expression for...Ch. 19 - Prob. 19.33ECh. 19 - Prob. 19.34ECh. 19 - Prob. 19.35ECh. 19 - What must the pressure be if the mean free path of...Ch. 19 - Prob. 19.37ECh. 19 - Prob. 19.38ECh. 19 - Prob. 19.39ECh. 19 - Explain why the molecular diameter for argon, at...Ch. 19 - Prob. 19.41ECh. 19 - Prob. 19.42ECh. 19 - Prob. 19.43ECh. 19 - A 1.00-mol sample of Xe gas is kept at a...Ch. 19 - Prob. 19.45ECh. 19 - Prob. 19.46ECh. 19 - Prob. 19.47ECh. 19 - Prob. 19.48ECh. 19 - Prob. 19.49ECh. 19 - Consider a gas mixture containing equal...Ch. 19 - The inverse of the collision rate, 1/z, is the...Ch. 19 - Prob. 19.52ECh. 19 - Prob. 19.53ECh. 19 - Prob. 19.54ECh. 19 - Prob. 19.55ECh. 19 - Estimate the rate at which Hg effuses out a hole...Ch. 19 - Prob. 19.57ECh. 19 - Knudsen effusion cells are used to determine vapor...Ch. 19 - Prob. 19.59ECh. 19 - Prob. 19.60ECh. 19 - Prob. 19.61ECh. 19 - Prob. 19.62ECh. 19 - Prob. 19.63ECh. 19 - Prob. 19.64ECh. 19 - Prob. 19.65ECh. 19 - Prob. 19.66ECh. 19 - Prob. 19.67ECh. 19 - Prob. 19.68ECh. 19 - Prob. 19.69ECh. 19 - Prob. 19.70ECh. 19 - Prob. 19.71ECh. 19 - Prob. 19.72ECh. 19 - Prob. 19.73E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY