Concept explainers
Interpretation:
The basis of most common nomenclature used for classification of enzymes has to be determined.
Concept Introduction:
The enzymes are essentially the biocatalysts present in all living systems. Each enzyme catalyzes a characteristic reaction within the biological system. Generally, most of the enzymes are proteins. Enzymes can make those reactions complete in an instant that otherwise takes days or weeks or extremely high temperature to complete.
Explanation of Solution
Enzymes are often named in accordance with the substrate on which they act. For example, lactase acts on the disaccharide named lactose and helps to remove the glycosidic linkages of lactose and therefore serves to hydrolyze the bond. Hence since the substrate is lactose the enzyme is coined the name lactase that is formed by addition of suffix–ase to the substrate.
Similarly, the enzyme sucrase derives its name from sucrose as it hydrolyzes the linkages of sucrose to yield fructose and glucose monomers of disaccharide sucrose.
Based on their specific role, they are classified into six major classes. These are as follows:
- Ligases: The enzymes that connect two molecules via covalent bonds are termed as ligases.
- Isomerases: The enzymes that catalyze the isomerization reactions are termed as isomerases.
- Lyases: Enzymes that catalyze the cleavage of bonds are called lyases.
- Hydrolases: These enzymes catalyze the cleavage of bonds via hydrolysis present in biological systems.
- Transferases: These enzymes that are involved in the transfer of various
functional groups such as methyl, acetyl group, or phosphate group. - Oxidoreductases: As the name suggests, these catalyze the
oxidation and reduction reactions that occur in living systems.
Want to see more full solutions like this?
Chapter 19 Solutions
GENERAL,ORGANIC,+BIOCHEMISTRY(LL)-PKG
- (c) SOCI Best Lewis Structure 2 e group arrangement: shape/molecular geometry:_ (d) PCls Best Lewis Structure polarity: e group geometry:_ shape/molecular geometry:_ (e) Ba(BrO2): Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forwardDon't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- reaction scheme for C39H4202 Hydrogenation of Alkyne (Alkyne to Alkene) show reaction (drawing) pleasearrow_forwardGive detailed mechanism Solution with explanation needed. Don't give Ai generated solutionarrow_forwardShow work with explanation needed....don't give Ai generated solutionarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY