Principles of Instrumental Analysis, 6th Edition
Principles of Instrumental Analysis, 6th Edition
6th Edition
ISBN: 9788131525579
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cenage Learning
Question
Book Icon
Chapter 19, Problem 19.11QAP
Interpretation Introduction

(a)

Interpretation:

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 2.4 T should be calculated.

Concept introduction:

Nuclear magnetic reasonance is a technique that is used to predict the structural formula of the compound. NMR spectroscopy involves the examination of the nucleus under the external magnetic field.

Expert Solution
Check Mark

Answer to Problem 19.11QAP

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 2.4 T is 0.9999845.

Explanation of Solution

The temperature and value of B0, magnetic field are given as 25°C and 2.4 T respectively.

The conversion of temperature from Celsius into Kelvin is shown below:

T(K)=T(°C)+273=25°C+273=298K

Therefore, the temperature is 298K.

The ratio of number of the nuclei in the upper magnetic energy state to the lower energy state is calculated by the formula,

NjN0=exp(γhB02πkT)

Where,

  • B0 is the magnetic field.
  • γ is the magnetogyric ratio.
  • Nj is the number of protons at the higher energy state.
  • N0 is the number of protons at the lower energy state.
  • T is the temperature.
  • h is the Plank’s constant equals to 6.63×1034Js .
  • k is the Boltzman constant equals to 1.38×1023JK1 .

The magnetogyric ratio for 19F is taken as 2.5181×108T1s1 from Table 19.1.

Substitute magnetogyric ratio, Plant’s constant, Boltzmann constant, temperature and magnetic field in above expression.

NjN0=exp((2.5181×108T1s1)(6.63×1034Js)(2.4T)2(3.14)(1.38×1023JK1)(298K))=exp(40.0680072×1032582.5872)=exp(0.0155×103)=0.9999845

Therefore, the relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 2.4 T is 0.9999845.

Interpretation Introduction

(b)

Interpretation:

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 4.69 T should be calculated.

Concept introduction:

Nuclear magnetic reasonance is a technique that is used to predict the structural formula of the compound. NMR spectroscopy involves the examination of the nucleus under the external magnetic field.

Expert Solution
Check Mark

Answer to Problem 19.11QAP

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 4.69 T is 0.9999697.

Explanation of Solution

The temperature and value of B0, magnetic field are given as 25°C and 4.69 T respectively.

The conversion of temperature from Celsius into Kelvin is shown below:

T(K)=T(°C)+273=25°C+273=298K

Therefore, the temperature is 298K.

The ratio of number of the nuclei in the upper magnetic energy state to the lower energy state is calculated by the formula,

NjN0=exp(γhB02πkT)

Where,

  • B0 is the magnetic field.
  • γ is the magnetogyric ratio.
  • Nj is the number of protons at the higher energy state.
  • N0 is the number of protons at the lower energy state.
  • T is the temperature.
  • h is the Plank’s constant equals to 6.63×1034Js .
  • k is the Boltzman constant equals to 1.38×1023JK1 .

The magnetogyric ratio for 19F is taken as 2.5181×108T1s1 from Table 19.1.

Substitute magnetogyric ratio, Plant’s constant, Boltzmann constant, temperature and magnetic field in above expression.

NjN0=exp((2.5181×108T1s1)(6.63×1034Js)(4.69T)2(3.14)(1.38×1023JK1)(298K))=exp(78.29956407×1032582.5872)=exp(0.0303×103)=0.9999697

Therefore, the relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 4.69 T is 0.9999697.

Interpretation Introduction

(c)

Interpretation:

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 7.05 T should be calculated.

Concept introduction:

Nuclear magnetic reasonance is a technique that is used to predict the structural formula of the compound. NMR spectroscopy involves the examination of the nucleus under the external magnetic field.

Expert Solution
Check Mark

Answer to Problem 19.11QAP

The relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 7.05 T is 0.9999544.

Explanation of Solution

The temperature and value of B0, magnetic field are given as 25°C and 7.05 T respectively.

The conversion of temperature from Celsius into Kelvin is shown below:

T(K)=T(°C)+273=25°C+273=298K

Therefore, the temperature is 298K.

The ratio of number of the nuclei in the upper magnetic energy state to the lower energy state is calculated by the formula,

NjN0=exp(γhB02πkT)

Where,

  • B0 is the magnetic field.
  • γ is the magnetogyric ratio.
  • Nj is the number of protons at the higher energy state.
  • N0 is the number of protons at the lower energy state.
  • T is the temperature.
  • h is the Plank’s constant equals to 6.63×1034Js .
  • k is the Boltzman constant equals to 1.38×1023JK1 .

The magnetogyric ratio for 19F is taken as 2.5181×108T1s1 from Table 19.1.

Substitute magnetogyric ratio, Plant’s constant, Boltzmann constant, temperature and magnetic field in above expression.

NjN0=exp((2.5181×108T1s1)(6.63×1034Js)(7.05T)2(3.14)(1.38×1023JK1)(298K))=exp(117.69977115×1032582.5872)=exp(0.04557×103)=0.9999544

Therefore, the relative number of 19F nuclei in the higher and lower magnetic states at 25°C in magnetic field of 7.05 T is 0.9999544.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the resonance frequency of a proton in a magnetic field of 14.1 T?
We calculated that the resonance frequency of an 1H in the presence of an 11.74 tesla magnet was 500MHz, and we later saw that a 13C nucleus resonantes at approximately 125 MHz in this same magnetic field. What is the resonance frequency of a 19F nucleus in the presence of an 11.74 tesla magnet?
A scientist investigates the possibility of neutron spin resonance, and has available a commercial NMR spectrometer operating at 300 MHz for 1H nuclei. What is the NMR frequency of the neutron in this spectrometer? What is the relative population difference at room temperature? Which is the lower energy spin state of the neutron?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning