Introductory Chemistry: An Active Learning Approach
6th Edition
ISBN: 9781305079250
Author: Mark S. Cracolice, Ed Peters
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 3PE
Interpretation Introduction
Interpretation:
The direction in which the equilibrium will shift if the volume of the container is decreased for the reaction
Concept introduction:
A reaction is said to be in equilibrium if the rate at which the forward reaction takes place becomes equal to the rate at which the backward reaction takes place. If any of the factors that affect the equilibrium changes, then the reaction shifts in either forward or backward direction so that the equilibrium condition is reestablished.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Introductory Chemistry: An Active Learning Approach
Ch. 18 - Prob. 1ECh. 18 - Prob. 2ECh. 18 - Prob. 3ECh. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10E
Ch. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Consider the following system at equilibrium at...Ch. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Which direction of the equilibrium...Ch. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Consider the following system at equilibrium at...Ch. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - Prob. 50ECh. 18 - The equilibrium between nitrogen monoxide, oxygen,...Ch. 18 - The equilibrium constant expression for a given...Ch. 18 - Prob. 53ECh. 18 - For the following system, K=4.86105 at 298K:...Ch. 18 - Prob. 55ECh. 18 - Prob. 56ECh. 18 - Prob. 57ECh. 18 - Question 57 and 58: In Chapter 9, we discussed how...Ch. 18 - Prob. 59ECh. 18 - A student measures the molar solubility of...Ch. 18 - Prob. 61ECh. 18 - Prob. 62ECh. 18 - Find the moles per liter and grams per 100mL...Ch. 18 - Prob. 64ECh. 18 - Prob. 65ECh. 18 - Prob. 66ECh. 18 - Prob. 67ECh. 18 - Ksp for silver hydroxide is 2.0108. Calculate the...Ch. 18 - Prob. 69ECh. 18 - Prob. 70ECh. 18 - Prob. 71ECh. 18 - Prob. 72ECh. 18 - Prob. 73ECh. 18 - Prob. 74ECh. 18 - Prob. 75ECh. 18 - Prob. 76ECh. 18 - Prob. 77ECh. 18 - Prob. 78ECh. 18 - Prob. 79ECh. 18 - Classify each of the following statements as true...Ch. 18 - Prob. 81ECh. 18 - Prob. 82ECh. 18 - Prob. 83ECh. 18 - Prob. 84ECh. 18 - Prob. 85ECh. 18 - Prob. 86ECh. 18 - Prob. 87ECh. 18 - Prob. 88ECh. 18 - Prob. 89ECh. 18 - Prob. 90ECh. 18 - Hard water has a high concentration of calcium and...Ch. 18 - Prob. 18.1TCCh. 18 - Prob. 18.3TCCh. 18 - a What happens to a reaction rate as temperature...Ch. 18 - Prob. 18.5TCCh. 18 - Write a brief description of the relationships...Ch. 18 - Prob. 2CLECh. 18 - Prob. 3CLECh. 18 - Prob. 4CLECh. 18 - Prob. 5CLECh. 18 - Prob. 1PECh. 18 - Prob. 2PECh. 18 - Prob. 3PECh. 18 - Prob. 4PECh. 18 - Prob. 5PECh. 18 - Prob. 6PECh. 18 - Prob. 7PECh. 18 - Prob. 8PECh. 18 - Prob. 9PECh. 18 - Prob. 10PECh. 18 - Prob. 11PECh. 18 - Prob. 12PECh. 18 - What is the molar solubility of calcium fluoride...Ch. 18 - Prob. 14PECh. 18 - Prob. 15PECh. 18 - Prob. 16PECh. 18 - Prob. 17PECh. 18 - Prob. 18PECh. 18 - Prob. 19PE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write an equation for an equilibrium system that would lead to the following expressions (ac) for K. (a) K=(Pco)2 (PH2)5(PC2H6)(PH2O)2 (b) K=(PNH3)4 (PO2)5(PNO)4 (PH2O)6 (c) K=[ ClO3 ]2 [ Mn2+ ]2(Pcl2)[ MNO4 ]2 [ H+ ]4 ; liquid water is a productarrow_forwardAt a certain temperature, K=0.29 for the decomposition of two moles of iodine trichloride, ICl3(s), to chlorine and iodine gases. The partial pressure of chlorine gas at equilibrium is three times that of iodine gas. What are the partial pressures of iodine and chlorine at equilibrium?arrow_forwardFor the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forward
- The equilibrium constant Kc for the synthesis of methanol, CH3OH. CO(g)+2H2(g)CH3OH(g) is 4.3 at 250C and 1.8 at 275C. Is this reaction endothermic or exothermic?arrow_forwardSuppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forward12.103 Methanol, CH3OH, can be produced by the reaction of CO with H2, with the liberation of heat. All species in the reaction are gaseous. What effect will each of the following have on the equilibrium concentration of CO? (a) Pressure is increased, (b) volume of the reaction container is decreased, (c) heat is added, (d) the concentration of CO is increased, (e) some methanol is removed from the container, and (f) H2 is added.arrow_forward
- Kc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardWrite a chemical equation for an equilibrium system that would lead to the following expressions (ad) for K. (a) K=(PH2S)2 (PO2)3(PSO2)2 (PH2O)2 (b) K=(PF2)1/2 (PI2)1/2PIF (c) K=[ Cl ]2(Pcl2)[ Br ]2 (d) K=(PNO)2 (PH2O)4 [ Cu2+ ]3[ NO3 ]2 [ H+ ]8arrow_forwardA solution is prepared by dissolving 0.050 mol of diiodocyclohexane, C5H10I2, in the solvent CCl4.The total solution volume is 1.00 L When the reaction C6H10I2 C6H10 + I2 has come to equilibrium at 35 C, the concentration of I2 is 0.035 mol/L. (a) What are the concentrations of C6H10I2 and C6H10 at equilibrium? (b) Calculate Kc, the equilibrium constant.arrow_forward
- Describe a nonchemical system that is not in equilibrium, and explain why equilibrium has not been achieved.arrow_forwardThe decomposition of PCl5(g) to form PCl3(g) and Cl2(g) has Kc = 33.3 at a high temperature. If the initial concentration of PCl5 is 0.1000 M, what are the equilibrium concentrations of the reactants and products?arrow_forward. What does it mean to say that a state of chemical or physical equilibrium is dynamic?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY