Chemistry: Structure and Properties (2nd Edition)
2nd Edition
ISBN: 9780134293936
Author: Nivaldo J. Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 33E
Calculate the change ¡n entropy that occurs in the system when 45.0 g of acetone (C3H6O) freezes at its melting point (—94.8°C). See Table 11.9for heats of fusion.
Table 11.9 Heats of Fusion of Several Substances
Liquid | Chemical Formula | Melting Point (°C) | |
Water | H2O | 0.00 | 6.02 |
Rubbing alcohol(isopropyl alcohol) | C3H8O | −89.5 | 5.37 |
Acetone | C3H6O | −94.8 | 5.69 |
Diethyl ether | C4H10O | −116.3 | 7.27 |
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Chemistry: Structure and Properties (2nd Edition)
Ch. 18 - What is the first law of thermodynamics, and how...Ch. 18 - What is nature’s heat tax, and how does it relate...Ch. 18 - What is a perpetual motion machine? Can such a...Ch. 18 - Is it more efficient to heat your home with a...Ch. 18 - What is a spontaneous process? Provide an example.Ch. 18 - Explain the difference between the spontaneity of...Ch. 18 - What is the precise definition of entropy? What is...Ch. 18 - Why does the entropy of a gas increase when it...Ch. 18 - Explain the difference between macrostates and...Ch. 18 - Based on its fundamental definition, explain why...
Ch. 18 - State the second law of thermodynamics. How does...Ch. 18 - What happens to the entropy of a sample of matter...Ch. 18 - Explain why water spontaneously freezes to form...Ch. 18 - Why do exothermic processes tend to be spontaneous...Ch. 18 - What is the significance of the change in Gibbs...Ch. 18 - Predict the spontaneity of a reaction (and the...Ch. 18 - State the third law of thermodynamics and explain...Ch. 18 - Why is the standard entropy of a substance in the...Ch. 18 - How does the standard entropy of a substance...Ch. 18 - How can you calculate the standard entropy change...Ch. 18 - Describe the three different methods to calculate...Ch. 18 - Why is free energy “free”?Ch. 18 - Explain the difference between G and G .Ch. 18 - Why does water spilled on the floor evaporate even...Ch. 18 - How do you calculate the change ¡n free energy for...Ch. 18 - How does the value of G for a reaction relate to...Ch. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Calculate the change in entropy that occurs in the...Ch. 18 - Prob. 32ECh. 18 - Calculate the change ¡n entropy that occurs in the...Ch. 18 - Prob. 34ECh. 18 - Without doing any calculations, determine the sign...Ch. 18 - Prob. 36ECh. 18 - Without doing any calculations, determine the sign...Ch. 18 - Prob. 38ECh. 18 - Calculate Ssurr at the indicated temperature for...Ch. 18 - Prob. 40ECh. 18 - Given the values of Hrxn , Srxn and T, determine...Ch. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Calculate the free energy change for the reaction...Ch. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Predict the conditions (high temperature, low...Ch. 18 - How does the molar entropy of a substance change...Ch. 18 - What is the molar entropy of a pure crystal at 0...Ch. 18 - For each pair of substances, choose the one that...Ch. 18 - For each pair of substances, choose the one that...Ch. 18 - Rank each set of substances in order of increasing...Ch. 18 - Prob. 54ECh. 18 - Use data from Appendix IIB to calculate Srxn for...Ch. 18 - Use data from Appendix IIB to calculate Srxn for...Ch. 18 - Find S for the formation of CH2Cl2(g) from its...Ch. 18 - Prob. 58ECh. 18 - Methanol burns in oxygen to form carbon dioxide...Ch. 18 - In photosynthesis, plants form glucose (C6H12O6)...Ch. 18 - For each reaction, calculate Hrxn , Srxn and Grxn...Ch. 18 - For each reaction calculate Hrxn , Srxn and Grxn...Ch. 18 - Use standard free energies of formation to...Ch. 18 - Use standard free energies of formation to...Ch. 18 - Consider the reaction: 2NO(g)+O2(g)2NO2(g)...Ch. 18 - Prob. 66ECh. 18 - Determine G for the reaction:...Ch. 18 - Prob. 68ECh. 18 - Consider the sublimation of iodine at 25.0°C:...Ch. 18 - Consider the evaporation of methanol at 25.0°C....Ch. 18 - Consider the reaction: CH3OH(g)CO(g)+2H2(g)...Ch. 18 - Consider the reaction: CO2(g)+CCl4(g)2COCl2(g)...Ch. 18 - Use data from Appendix IIB to calculate the...Ch. 18 - Prob. 74ECh. 18 - Prob. 75ECh. 18 - Prob. 76ECh. 18 - Prob. 77ECh. 18 - Prob. 78ECh. 18 - Consider the reaction: H2(g)+I2(g)2HI(g) The...Ch. 18 - Consider the reaction: 2N0(g) — O(g) 2N02(g) The...Ch. 18 - The change in enthalpy (Hrxn) for a reaction is...Ch. 18 - Prob. 82ECh. 18 - Prob. 83ECh. 18 - Prob. 84ECh. 18 - Our atmosphere is composed primarily of nitrogen...Ch. 18 - Prob. 86ECh. 18 - Ethene (C2H4) can be halogenated by the reaction:...Ch. 18 - H2 reacts with the halogens (X2) according to the...Ch. 18 - Consider this reaction occurring at 298 K:...Ch. 18 - Consider this reaction occurring at 298 K:...Ch. 18 - Prob. 91ECh. 18 - Prob. 92ECh. 18 - These reactions are important in catalytic...Ch. 18 - Prob. 94ECh. 18 - All the oxides of nitrogen have positive values of...Ch. 18 - Prob. 96ECh. 18 - Consider the reaction X2(g)2X(g) . When a vessel...Ch. 18 - Prob. 98ECh. 18 - Indicate and explain the sign of Suniv for each...Ch. 18 - The Haber process is very important for...Ch. 18 - A metal salt with the formula MCl2 crystallizes...Ch. 18 - The solubility of AgCI(s) in water at 25°C is...Ch. 18 - Review the subsection in this chapter entitled...Ch. 18 - Calculate the entropy of each state and rank the...Ch. 18 - Suppose we redefine the standard state as P=2atm ....Ch. 18 - The G for the freezing of H2O(l) at 10°C is 210...Ch. 18 - Consider the reaction that occurs during the Haber...Ch. 18 - The salt ammonium nitrate can follow three modes...Ch. 18 - Given the tabulated data, calculate Svap for each...Ch. 18 - Prob. 110ECh. 18 - Prob. 111ECh. 18 - Consider the changes in the distribution of nine...Ch. 18 - Prob. 113ECh. 18 - Prob. 114ECh. 18 - Prob. 115ECh. 18 - The reaction A(g)B(g) has an equilibrium constant...Ch. 18 - Prob. 117ECh. 18 - Prob. 118ECh. 18 - Prob. 119ECh. 18 - Have each group member look up Hf and S for one...Ch. 18 - Calculate G at 25°C for the reaction in the...Ch. 18 - Prob. 122ECh. 18 - Which reaction Is most likely to have a positive...Ch. 18 - Prob. 2SAQCh. 18 - Arrange the gases—F2, Ar, and CH3F—in order of...Ch. 18 - Prob. 4SAQCh. 18 - Prob. 5SAQCh. 18 - For a certain reaction Hrxn=255kJ and Srxn=211J/K...Ch. 18 - Prob. 7SAQCh. 18 - s8. Use standard free energies of formation to...Ch. 18 - Prob. 9SAQCh. 18 - For the following reaction, Grxn=9.4kJ at 25 °C....Ch. 18 - Prob. 11SAQCh. 18 - Prob. 12SAQCh. 18 - Prob. 13SAQCh. 18 - Prob. 14SAQCh. 18 - Prob. 15SAQCh. 18 - Prob. 16SAQ
Additional Science Textbook Solutions
Find more solutions based on key concepts
11. In the early 1800s, French naturalist Jean Baptiste Lamarck suggested that the best explanation for the rel...
Campbell Biology: Concepts & Connections (9th Edition)
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
Label each statement about the polynucleotide ATGGCG as true or false. The polynucleotide has six nucleotides. ...
General, Organic, and Biological Chemistry - 4th edition
Give the IUPAC name for each compound.
Organic Chemistry
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Some water is placed in a coffee-cup calorimeter. When 1.0 g of an ionic solid is added, the temperature of the solution increases from 21.5C to 24.2C as the solid dissolves. For the dissolving process, what are the signs for Ssys, Ssurr, and Suniv?arrow_forwardAthletic trainers use instant ice packs that can be cooled quickly on demand. Squeezing the pact breaks an inner container, allowing two components to mix and react. This reaction makes the pack become cold. Describe the heat flow for this spontaneous process.arrow_forwardFor each process, tell whether the entropy change of the system is positive or negative. Water vapor (the system) deposits as ice crystals on a cold windowpane. A can of carbonated beverage loses its fizz. (Consider the beverage but not the can as the system. What happens to the entropy of the dissolved gas?) A glassblower heats glass (the system) to its softening temperature.arrow_forward
- Nickel metal reacts with carbon monoxide to form tetra-carbonyl nickel, Ni(CO)4: Ni(s)+4CO(g)Ni(CO)4(g) This reaction is exploited in the Mond process in order to separate pure nickel from other metals. The reaction above separates nickel from impurities by dissolving it into the gas phase. Conditions are then changed so that the reaction runs in the opposite direction to recover the purified metal. (a) Predict the sign of S for the reaction as written above. (b) Use tabulated thermodynamic data to calculate H, S , and G for the reaction. (c) Find the range of temperatures at which this reaction is spontaneous in the forward direction.arrow_forwardFor the reaction NO(g)+NO2(g)N2O3(g) , use tabulated thermodynamic data to calculate H and S. Then use those values to answer the following questions. (a) Is this reaction spontaneous at 25°C? Explain your answer. (b) If the reaction is not spontaneous at 25°C, will it become spontaneous at higher temperatures or lower temperatures? (c) To show that your prediction is accurate, choose a temperature that corresponds to your prediction in part (b) and calculate G . (Assume that both enthalpy and entropy are independent of temperature.)arrow_forwardThrough photosynthesis, plants build molecules of sugar containing several carbon atoms from carbon dioxide. In the process, entropy is decreased. The reaction of CO2with formic acid to form oxalic acid provides a simple example of a reaction in which the number of carbon atoms in a compound increases: CO2(aq)+HCOOH(aq)H2C2O4(aq) (a) Calculate the standard entropy change for this reaction and discuss the sign of S . (b) How do plants carry out reactions that increase the number of carbon atoms in a sugar, given the changes in entropy for reactions like this?arrow_forward
- For each process, tell whether the entropy change of the system is positive or negative, (a) A glassblower heats glass (the system) to its softening temperature, (b) A teaspoon of sugar dissolves in a cup of coffee. (The system consists of both sugar and coffee.) (c) Calcium carbonate precipitates out of water in a cave to form stalactites and stalagmites. (Consider only the calcium carbonate to be the system.)arrow_forwardFor the reaction at 298 K, 2NO2(g)N2O4(g) the values of H and S are 58.03 kJ and 176.6 J/K, respectively. What is the value of G at 298 K? Assuming that H and S do not depend on temperature, at what temperature is G = 0? Is G negative above or below this temperature?arrow_forwardWhich of the following processes will lead to a decrease in the internal energy of a system? (1) Energy is transferred as heat to the system; (2) energy is transferred as heat from the system; (3) energy is transferred as work done on the system; or (4) energy is transferred as work done by the system. (a) 1 and 3 (b) 2 and 4 (c) 1 and 4 (d) 2and3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY