College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 19PE
Suppose you have a total charge qtot that you can split in any manner. Once split, the separation distance is fixed. How do you split the charge to achieve the greatest force?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(a) A physics lab instructor is working on a new demonstration. She attaches two identical metal spheres with mass m = 0.220 g to strings of length L as shown in the figure.
A
Ⓡ
Both spheres have the same charge of 6.80 nC, and are in static equilibrium when 0 = 5.40°. What is L (in m)? Assume the strings are massless.
0.4985
X
Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m
(b) What If? The charge on both spheres is increased until each string makes an angle of 0 = 10.8° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case?
39.9639
X
Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nC
A small glass bead charged to 5.5 nC is in the plane that bisects a thin, uniformly charged, 10 cm-long glass rod and is 4.0 cm from the rod's center. The bead is repelled from the rod with a force of 740 μN
what is the rod's total charge?
A positive charge q, = 3.00 µC on a frictionless horizontal surface is attached to a spring of force constant k as in the figure shown below. When a charge of q, = -8.950 µC is placed 9.50 cm away from the positive charge, the spring stretches by 5.00 mm, reducing the distance between charges to d = 9.00 cm. Find the value of k.
ww
92
N/m
Need Help?
Read It
Chapter 18 Solutions
College Physics
Ch. 18 - There are very large numbers of charged particles...Ch. 18 - Why do most objects tend to contain nearly equal...Ch. 18 - An eccentric inventor attempts to levitate by...Ch. 18 - If you have charged an electroscope by contact...Ch. 18 - When a glass rod is rubbed with silk, it becomes...Ch. 18 - Why does a car always attract dust right after it...Ch. 18 - Describe how a positively charged object can be...Ch. 18 - What is grounding? What effect does it have on a...Ch. 18 - Figure 18.43 shows the charge distribution in a...Ch. 18 - Using Figure 18.43, explain, in terms of Coulomb's...
Ch. 18 - Given the polar character of water molecules,...Ch. 18 - Why must the test charge q in the definition of...Ch. 18 - Are the direction and magnitude of the Coulomb...Ch. 18 - Compare and contrast the Coulomb force field and...Ch. 18 - Figure 18.44 shows an electric field extending...Ch. 18 - A cell membrane is a thin layer enveloping a cell....Ch. 18 - Is the object in Figure 18.45 a conductor or an...Ch. 18 - If the electric field lines in the figure above...Ch. 18 - The discussion of the electric field between two...Ch. 18 - Would the self-created electric field at the end...Ch. 18 - Why is a golfer with a metal dub over her shoulder...Ch. 18 - Can the belt of aVan de Graaff accelerator he a...Ch. 18 - Are you relatively safe from lightning inside an...Ch. 18 - Discuss pros and cons of a lightning rod being...Ch. 18 - Using the symmetry of the arrangement, show that...Ch. 18 - (a) Using the symmetry of the arrangement, show...Ch. 18 - (a) What is the direction of the total Coulomb...Ch. 18 - Considering Figure 18.46, suppose that qa= qdand...Ch. 18 - If qa = 0 in Figure 18-46, under what conditions...Ch. 18 - In regions of low humidity, one develops a special...Ch. 18 - Tollbooth stations on roadways and bridges usually...Ch. 18 - Suppose a woman carries an excess charge. To...Ch. 18 - Common static electricity involves charges ranging...Ch. 18 - If 1.801020electrons move through a pocket...Ch. 18 - To start a car engine, the car battery moves...Ch. 18 - A certain lightning bolt moves 40.0 C of charge....Ch. 18 - Suppose a speck of dust in an electrostatic...Ch. 18 - An amoeba has 1.001016protons and a net charge of...Ch. 18 - A 50.0 g ball of copper has a net charge of 2.00...Ch. 18 - What net charge would you place on a 100 g piece...Ch. 18 - How many coulombs of positive charge are there in...Ch. 18 - What is the repulsive force between two pith balls...Ch. 18 - (a) How strong is the attractive force between a...Ch. 18 - Two point charges exert a 5.00 N force on each...Ch. 18 - Two point charges are brought closer together,...Ch. 18 - How far apart must two point charges of 75.0 nC...Ch. 18 - If two equal charges each of 1 C each are...Ch. 18 - A test charge of +2C is placed halfway between a...Ch. 18 - Bare free charges do not remain stationary when...Ch. 18 - (a) By what factor must you change the distance...Ch. 18 - Suppose you have a total charge qtot that you can...Ch. 18 - (a) Common transparent tape becomes charged when...Ch. 18 - Find the ratio of the electrostatic to...Ch. 18 - At what distance is the electrostatic force...Ch. 18 - A certain five cent coin contains 5.00 g of...Ch. 18 - (a) Two point charges totaling 8.00 C exert a...Ch. 18 - Point charges of 5.00 C and 3.00/C are placed...Ch. 18 - (a) Two point charges q1 and q23.00 m apart, and...Ch. 18 - What is the magnitude and direction of an electric...Ch. 18 - What is the magnitude and direction of the force...Ch. 18 - Calculate the magnitude of the electric field 2.00...Ch. 18 - (a) What magnitude point charge creates a 10,000...Ch. 18 - Calculate the initial (from rest) acceleration of...Ch. 18 - (a) Find the direction and magnitude of an...Ch. 18 - (a) Sketch the electric field lines near a point...Ch. 18 - Sketch the electric field lines a long distance...Ch. 18 - Figure 18.47 shows the electric field lines near...Ch. 18 - Sketch the electric field lines in the vicinity of...Ch. 18 - Sketch the electric field lires in the vicinity of...Ch. 18 - Sketch the electric field lines in the vicinity of...Ch. 18 - Sketch the electric field between the two...Ch. 18 - Sketch the electric field lines in the vicinity of...Ch. 18 - What is the force on the charge located at x =...Ch. 18 - (a) Find the total electric field at x = 1.00 cm...Ch. 18 - (a) Find the electric field at x = 5.00 cm in...Ch. 18 - (a) Find the total Coulomb force on a charge of...Ch. 18 - Using the symmetry of the arrangement, determine...Ch. 18 - (a) Using the symmetry of the arrangement,...Ch. 18 - Find the electric field at the location of qain...Ch. 18 - 48. Find the total Coulomb force on a charge q in...Ch. 18 - Find the electric field at the location of qain...Ch. 18 - (a) Find the electric field at the center of the...Ch. 18 - (a) What is the electric field 5.00 m from the...Ch. 18 - (a) What is the direction and magnitude of an...Ch. 18 - A simple and common technique for accelerating...Ch. 18 - Earth has a net charge that produces an electric...Ch. 18 - Point charges of 25.0 C and 45.0 (2 are placed...Ch. 18 - What can you say about two charges q1and q2, if...Ch. 18 - Integrated Concepts Calculate the angular velocity...Ch. 18 - Integrated Concepts An electron has an initial...Ch. 18 - Integrated Concepts The practical limit to an...Ch. 18 - Integrated Concepts A 5.00 g charged insulating...Ch. 18 - Integrated Concepts Figure 18.57 shows an electron...Ch. 18 - Integrated Concepts The classic Millikan oil drop...Ch. 18 - Integrated Concepts (a) In Figure 18.59, four...Ch. 18 - Unreasonable Results 64. (a) Calculate the...Ch. 18 - Unreasonable results (a) Two 0.500 g raindrops in...Ch. 18 - Unreasonable results A wrecking yard inventor...Ch. 18 - Construct Your Own Problem Consider two insulating...Ch. 18 - Construct Your Own Problem Consider identical...
Additional Science Textbook Solutions
Find more solutions based on key concepts
S
10. FIGURE EX6.10 shows the velocity graph of a 2.0 kg object as it moves along the x-axis. What is the net ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (3rd Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (4th Edition)
Does a car’s odometer measure distance traveled or displacement?
University Physics Volume 1
On its highest power setting, a microwave oven increases the temperature of 0.400 kg of spaghetti by 45.0°C in ...
University Physics Volume 2
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Four equally charged particles with charge q are placed at the comers of a square with side length L, as shown in Figure P23.51. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? Figure P23.51arrow_forwardThree charged panicles are located at the corners of an equilateral triangle as shown in Figure P23.15. Calculate the total electric force on the 7.00-C charge.arrow_forwardAn object has a charge of 35 nC. How many excess protons does it have?arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in Figure P19.9. Calculate the total electric force on the 7.00-C charge.arrow_forwardThe charge unit length on the thin shown below is .What is the force on the point charge q? Solve this problem by first considering the electric force dF on q due to a small segment dx of the rod, which contains charge dx . Then, find the net force by integrating dF over the length of the rod.arrow_forwardFour charged particles q, q, q, and q are Fixed at the comers of a square with side length L as shown in Figure P23.52. If another charged particle of magnitude Q is placed at the center of the square, will it be in static equilibrium? Does the sign of the charge Q matter? Explain.arrow_forward
- A small sphere of mass m carries a charge of q. It hangs from a silk thread which makes an angle θwith a large charged non-conducting sheet. Calculate the surface charge density onthe sheet.arrow_forwardTwo charges +1 μC and +13 μC are placed along the x axis, with the first charge at the origin (x = the second charge at x = +1 m. Find the magnitude and direction of the net force on a -8 nC charge 0) and when placed at the following locations below. Overall Hint a. halfway between the two charges: magnitude of force is direction is Select an answer b. on the axis at x = -0.5 m: magnitude of force is is Select an answer c. at the coordinate (x, y) = (1 m, 0.5 m) (half a meter above the +13 μC charge in a direction perpendicular to the line joining the two fixed charges): Hint for (c) Magnitude of force is degrees below -x axis. mN, and the direction is mN, and the mN, and the directionarrow_forwardTwo particles, one with charge -7.13 µC and one with charge 3.55 µC, are 6.59 cm apart. What is the magnitude of the force that one particle exerts on the other? force: TOOLS 93=== Two ne x10 entical positive charge qs, are placed the same 6.59 cm apart, and the force between them is measured to be the same as that between the original particles. What is q? N HCarrow_forward
- I cant seem to get the force calculationarrow_forwardTwo identical point charges in free spaceare connected by a string 7.6 cm long. The tension in the string is0.21 N. (a) Find the magnitude of the charge on each of the pointcharges. (b) Using the information given in the problem statement, is it possible to determine the sign of the charges? Explain.(c) Find the tension in the string if +1.0 mC of charge is transferredfrom one point charge to the other. Compare with your resultfrom part (a).arrow_forwardGggarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY