Fundamentals of Geotechnical Engineering (MindTap Course List)
5th Edition
ISBN: 9781305635180
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18.8P
To determine
Find the allowable load carrying capacity of the pile
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Variation of N60 with depth in a granular soil deposit is given below. A concrete pile 9 m long
with cross-section of 0.305m X 0.305m is driven into the sand. Then, estimate the allowable
load-carrying capacity of the pile (Qallow). Use F.S.=4 and Meyerhof's equation for Qp and
Qs.
Depth (m)
N60
1.5
4
3.0
4.5
7
6.0
7.5
16
9.0
18
10.5
21
11.0
24
12.5
20
14.0
19
12.2 A 20 m long concrete pile is shown in Figure P12.2.
Estimate the ultimate point load Q, by
a. Meyerhof's method
b. Vesic's method
c. Coyle and Castello's method
Use m = 600 in Eq. (12.28).
Concrete pile
460 mm X 460 mm
Loose sand
di = 30°
y = 18.6 kN/m3
20 m
F
Dense sand
$2 = 42°
y = 18.5 kN/m
i need the answer quickly
Chapter 18 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
Ch. 18 - State whether the following are true or false. a....Ch. 18 - A 1500 kN load was applied on two 20 m long and...Ch. 18 - A 500 mm diameter and 20 m long concrete pile is...Ch. 18 - A 400-mm diameter and 15 m long concrete pile is...Ch. 18 - A 400 mm 400 mm square precast concrete pile of...Ch. 18 - Prob. 18.6PCh. 18 - Prob. 18.7PCh. 18 - Prob. 18.8PCh. 18 - Determine the maximum load that can be allowed on...Ch. 18 - Prob. 18.10P
Ch. 18 - Redo Problem 18.10 using the method for...Ch. 18 - Determine the maximum load that can be allowed on...Ch. 18 - Prob. 18.13PCh. 18 - A steel pile (H-section; HP 360 1.491; see Table...Ch. 18 - A concrete pile is 18 m long and has a cross...Ch. 18 - Prob. 18.16PCh. 18 - Prob. 18.17PCh. 18 - Prob. 18.18PCh. 18 - Prob. 18.19PCh. 18 - Figure 18.26a shows a pile. Let L = 20 m, D = 450...Ch. 18 - Refer to Figure 18.26b. Let L = 15.24 m, fill =...Ch. 18 - Prob. 18.22PCh. 18 - Figure 18.39 shows a 3 5 pile group consisting of...Ch. 18 - The section of a 4 4 group pile in a layered...Ch. 18 - Prob. 18.25PCh. 18 - Prob. 18.26CTP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m = 600 in Eq. (9.26). 9.1 Concrete pile 460 mm x 460 mm Loose sand di = 30° y = 18.6 kN/m3 20 m Dense sand d'2 = 42° y = 18.5 kN/m3 Figure P9.1arrow_forwardPlease answer a and c onlyarrow_forwardA concrete pile 20 m long with a cross section of 400 mm x 400 mm is fully embedded in a saturated clay layer. The clay has the following properties: γsat = 18.5 kN/m3, ϕ= 0 and cu = 70 kPa. Assume that the water table rises to the tip of the pile. Determine the allowable load that the pile can carry (FS=3). Use the α and λ method to estimate the skin resistance.arrow_forward
- Following is the variation of N60 with depth in a granular soil deposit. A concrete pile 9 m long (460 mm x 460 mm in cross section) is driven into the sand and fully embedded in the sand. Estimate the allowable load-carrying capacity of the pile (Qall). Use FS as 4 and Meyerhof’s equationsarrow_forwardFollowing is the variation of N60 with depth in a granular soil deposit. A concrete pile 9 m long (460 mm x 460 mm in cross section) is driven into the sand and fully embedded in the sand. Estimate the allowable load-carrying capacity of the pile (Qall). Use FS as 4 and Briaud et al. equationarrow_forwardConsider a continuous flight auger pile in a sandy soil deposit 10 m long with a diameter of 0.45 m. Following is the variation of standard penetration resistance values (N60) with depth. Estimate the ultimate load-carrying capacity of the pile. Assume unit weight of soil, γ = 15.5 kN/m3.arrow_forward
- A concrete pile 20 m long having a cross section of 0.46 m × 0.46 m is fully embedded in a saturated clay layer. For the clay, given: Yat = 18 kN/m², = 0, and Cu = 80 kN/m?. Determine the allowable load that the pile can carry (FS = 3). Use %3D the A method to estimate the skin resistance.arrow_forward114 A driven closed-ended pile, circular in cross section, is shown in Figure P11.4. Calculate the following: a. The ultimate point load using Meyerhof's procedure. b. The ultimate point load using Vesic's procedure. Take I,, = 50. e. An approximate ultimate point load on the basis of parts (a) and (b).arrow_forwardA driven closed-ended pile, circular in cross section, is shown in Figure P 9.4.Calculate the following.a. The ultimate point load using Meyerhof’s procedure.b. The ultimate point load using Vesic’s procedure. Take Irr = 50.c. An approximate ultimate point load on the basis of parts (a) and (b).d. The ultimate frictional resistance Qs. [Use Eqs. (9.40 (L' ≈ 15 D)) through (9.42), and take K = 1.4 and ẟ' = 0.6 Φ'.]e. The allowable load of the pile (use FS = 4).arrow_forward
- Please solve under Geotechnology II.arrow_forwardFollowing is the variation of N60 with depth in a granular soil deposit. A concrete pile 9 m long (460 mm x 460 mm in cross section) is driven into the sand and fully embedded in the sand. Estimate the allowable load-carrying capacity of the pile (Qall). Use FS = 4 and Meyerhof’s equationsarrow_forwardPlease answer 11.22arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning