THERMODYNAMICS-SI ED. EBOOK >I<
THERMODYNAMICS-SI ED. EBOOK >I<
9th Edition
ISBN: 9781307573022
Author: CENGEL
Publisher: MCG/CREATE
bartleby

Videos

Question
Book Icon
Chapter 17.7, Problem 121RP
To determine

The expressions for the ratio of the stagnation pressure after a shock wave to the static pressure before the shock wave as a function of k and the Mach number upstream of the shock wave Ma1.

Expert Solution & Answer
Check Mark

Answer to Problem 121RP

The expressions for the ratio of the stagnation pressure after a shock wave to the static pressure before the shock wave as a function of k and the Mach number upstream of the shock wave Ma1 is obtained and shown in Equation (VI).

Explanation of Solution

Write the Equation 17-38 as in text book (the relation between the pressures after shock and before shock for an ideal gases).

P2P1=1+kMa121+kMa22 (I)

Here, the specific heat ratio is k, the Mach number is Ma, the subscript 1 and 2 indicates the states of before and after shocks.

Write the relation between the stagnation pressure (P0) and static pressure (P) for ideal gas at isentropic flow.

P0P=[1+(k12)Ma2]kk1 (II)

Here, the subscript 0 indicates the stagnation state.

Write the Equation 17-39 as in text book (the expression for Mach number after shock).

Ma22=Ma12+2/(k1)2Ma12k/(k1)1 (III)

Conclusion:

Rearrange the Equation (I) to obtain P2.

P2=P1(1+kMa121+kMa22)

Express the Equation (II) for state 2 i.e. after shock.

P02P2=[1+(k12)Ma22]kk1 (IV)

Substitute P1(1+kMa121+kMa22) for P2 in Equation (IV)

P02P1(1+kMa121+kMa22)=[1+(k12)Ma22]kk1P02P1=(1+kMa121+kMa22)[1+(k12)Ma22]kk1 (V)

Refer Equation (III).

Substitute Ma12+2/(k1)2Ma12k/(k1)1 for Ma22 in Equation (V).

P02P1=(1+kMa121+k(Ma12+2/(k1)2Ma12k/(k1)1))[1+(k12)(Ma12+2/(k1)2Ma12k/(k1)1)]kk1=(1+kMa12[2Ma12k/(k1)1]+[kMa12+k2/(k1)]2Ma12k/(k1)1)[1+(k1)[Ma12+2/(k1)]2(2Ma12k/(k1)1)]kk1=((1+kMa12)(2Ma12k/(k1)1)2Ma12k/(k1)1+kMa12+k2/(k1))[1+(k1)Ma12+22(2Ma12k/(k1)1)]kk1=((1+kMa12)(1k1)(2Ma12k1(k1))2Ma12k/(k1)1+kMa12+k2/(k1))[1+2[(k1)Ma12/2+1]2(2Ma12k/(k1)1)]kk1

=((1+kMa12)(2Ma12kk+1)(k1)[2Ma12k/(k1)1+kMa12+k2/(k1)])[1+(k1)Ma12/2+12Ma12k/(k1)1]kk1=((1+kMa12)(2Ma12kk+1)2Ma12k1(k1)+(k1)kMa12+2k)[1+(k1)Ma12/2+12Ma12k/(k1)1]kk1=((1+kMa12)(2Ma12kk+1)2Ma12kk+1+k2Ma12kMa12+2k)[1+(k1)Ma12/2+12Ma12k/(k1)1]kk1=((1+kMa12)(2Ma12kk+1)2Ma12k+k2Ma12kMa12k+1+2k)[1+(k1)Ma12/2+12Ma12k/(k1)1]kk1

=((1+kMa12)(2Ma12kk+1)kMa12(2+k1)+k+1)[1+(k1)Ma12/2+12Ma12k/(k1)1]kk1=((1+kMa12)(2Ma12kk+1)kMa12(k+1)+k+1)[1+(k1)Ma12/2+12Ma12k/(k1)1]kk1 (VI)

Thus, the expressions for the ratio of the stagnation pressure after a shock wave to the static pressure before the shock wave as a function of k and the Mach number upstream of the shock wave Ma1 is obtained and shown in Equation (VI).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Rewrite dV/V in terms of only Mach number and γ for a steady, adiabatic flow. Showall steps of the derivation clearly. γ = 1.4, R=287 J/kgK
Find the expression for the ratio of the stagnation pressure after a shock wave to the static pressure before the shock wave as a function of k and the Mach number upstream of the shock wave Ma1
Q4/ Air enters a duct with a Mach number of 2.0, and the temperature and pressure are 170 K and 0.7 bar, respectively. Heat transfer takes place while the flow proceeds down the duct. A converging section (A2/A3 = 1.45) is attached to the outlet as shown in Fig. Q4, and the exit Mach number is 1.0. Assume that the inlet conditions and exit Mach number remain fixed. Find the amount and direction of heat transfer in the duct: (a) If there are no shocks in the system. (b) If there is a normal shock someplace in the duct. M, - 2.0 T,- 170 K P-0.7 bar M, = 1.0 Fig.Q4 AzlA, = 1.45

Chapter 17 Solutions

THERMODYNAMICS-SI ED. EBOOK >I<

Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License