Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.3, Problem 17.129P
To determine
Find the angular velocities of the sphere and the bar immediately after the impact.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A bowler sends his ball down the lane with a forward velocity of 10 ft/s and backspin of 12 rad/s.
His ball weighs 16 lbs and has a diameter of 10 in. Knowing that a bowling ball has more weight
concentrated towards the center, we will estimate the mass moment of inertia as: I = mr².
Starting from t, at the moment the ball hits the alley, and knowing the coefficient of friction is
0.10, determine:
(a) The time t, when the ball starts to roll forward without sliding
(b) The speed of the ball at this time
(c) The distance the ball has traveled at this time
00
Vo
The delivery man is trying to push your 36-kg package, initially at rest, towards your house by applying a 140-N force P.
inclined as shown, at 18 m above the floor, The coefficient of non-sliding friction between the floor and the package is
05
Immediately after the force P is applied, the refrigerator started to tip without sliding about corner O.
G. 0.75 m
E
W.
1.5 m
1. What quantity is zero at the instant shown below?
3. Which of the following equations summing of moments about O is CORRECT and can be used to solve for the angular
acceleration of the package?
24
P(1.8) +
25 P(1.5) – W (0.75) = Iga+ ma(1.25)
25
24
B.
P(1.8) +
25
5 P(1.5) – W (0.75) = Iga+ ma(1.25)
24
C.
25 P(1.8) + 5
P(1.5) - W (0.75) = lga+ma(0.75) +
24
ma(1.0)
25
25
P(1.8)+P(1.5) - W (0.75) = Iga + ma(1.25)
D.
25
24
4. What is the angular acceleration of the package?
5. What is the frictional force between the package and the floor?
1.8 m
How to get the correct answer
Chapter 17 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 17.1 - A round object of mass m and radius r is released...Ch. 17.1 - Prob. 17.2CQCh. 17.1 - Prob. 17.3CQCh. 17.1 - Prob. 17.4CQCh. 17.1 - Slender bar A is rigidly connected to a massless...Ch. 17.1 - A 200-kg flywheel is at rest when a constant 300...Ch. 17.1 - The rotor of an electric motor has an angular...Ch. 17.1 - Prob. 17.3PCh. 17.1 - Two disks of the same material are attached to a...Ch. 17.1 - Prob. 17.5P
Ch. 17.1 - PROBLEM 17.6
The flywheel of a punching machine...Ch. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - The 10-in.-radius brake drum is attached to a...Ch. 17.1 - Prob. 17.10PCh. 17.1 - Prob. 17.11PCh. 17.1 - Prob. 17.12PCh. 17.1 - Prob. 17.13PCh. 17.1 - The double pulley shown has a mass of 15 kg and a...Ch. 17.1 - Gear A has a mass of 1 kg and a radius of gyration...Ch. 17.1 - Prob. 17.16PCh. 17.1 - Prob. 17.17PCh. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - An adapted golf device attaches to a wheelchair to...Ch. 17.1 - Prob. 17.20PCh. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Two identical slender rods AB and BC are welded...Ch. 17.1 - Prob. 17.24PCh. 17.1 - Prob. 17.25PCh. 17.1 - Prob. 17.26PCh. 17.1 - Greek engineers had the unenviable task of moving...Ch. 17.1 - A small sphere of mass m and radius r is released...Ch. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W = 14 lb...Ch. 17.1 - Prob. 17.33PCh. 17.1 - A bar of mass m = 5 kg is held as shown between...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - The motion of the uniform rod AB is guided by...Ch. 17.1 - Prob. 17.37PCh. 17.1 - Prob. 17.38PCh. 17.1 - The ends of a 9-lb rod AB are constrained to move...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L = 1 m...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - 17.45 The uniform rods AB and BC weigh 2.4 kg and...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - Prob. 17.50PCh. 17.1 - Prob. 17.51PCh. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - Prob. 17.2IMDCh. 17.2 - Prob. 17.3IMDCh. 17.2 - Prob. 17.52PCh. 17.2 - Prob. 17.53PCh. 17.2 - Prob. 17.54PCh. 17.2 - A uniform 144-lb cube is attached to a uniform...Ch. 17.2 - Prob. 17.56PCh. 17.2 - Prob. 17.57PCh. 17.2 - Prob. 17.58PCh. 17.2 - Prob. 17.59PCh. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Each of the gears A and B has a mass of 675 g and...Ch. 17.2 - Prob. 17.62PCh. 17.2 - Prob. 17.63PCh. 17.2 - Prob. 17.64PCh. 17.2 - Prob. 17.65PCh. 17.2 - Show that, when a rigid body rotates about a fixed...Ch. 17.2 - Prob. 17.68PCh. 17.2 - A flywheel is rigidly attached to a 1.5-in.-radius...Ch. 17.2 - A wheel of radius r and centroidal radius of...Ch. 17.2 - Prob. 17.71PCh. 17.2 - 17.72 and 17.73 A 9-in.·radius cylinder of weight...Ch. 17.2 - 17.72 and 17.73 A 9-in.·radius cylinder of weight...Ch. 17.2 - Two uniform cylinders, each of mass m = 6 kg and...Ch. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - A bowler projects an 8.5-in.-diameter ball...Ch. 17.2 - Prob. 17.79PCh. 17.2 - A satellite has a total weight (on Earth) of 250...Ch. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - Prob. 17.83PCh. 17.2 - Prob. 17.84PCh. 17.2 - Prob. 17.85PCh. 17.2 - Prob. 17.86PCh. 17.2 - Prob. 17.87PCh. 17.2 - Prob. 17.88PCh. 17.2 - A 1.8-kg collar A and a 0.7-kg collar B can slide...Ch. 17.2 - Prob. 17.90PCh. 17.2 - A small 4-lb collar C can slide freely on a thin...Ch. 17.2 - Rod AB has a weight of 6 lb and is attached to a...Ch. 17.2 - Prob. 17.93PCh. 17.2 - Prob. 17.94PCh. 17.2 - The 6-lb steel cylinder A of radius r and the...Ch. 17.3 - A uniform slender rod AB of mass m is at rest on a...Ch. 17.3 - Prob. 17.5IMDCh. 17.3 - Prob. 17.6IMDCh. 17.3 - At what height h above its center G should a...Ch. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - In Prob. 17.97, determine (a) the required...Ch. 17.3 - A 16-lb wooden panel is suspended from a pin...Ch. 17.3 - Prob. 17.100PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - Prob. 17.103PCh. 17.3 - Prob. 17.104PCh. 17.3 - Prob. 17.105PCh. 17.3 - A uniform slender rod AB is at rest on a...Ch. 17.3 - A bullet of mass m is fired with a horizontal...Ch. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L = 200 mm and...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - 17.113 The slender rod AB of length L = 1 m forms...Ch. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - Prob. 17.117PCh. 17.3 - Prob. 17.118PCh. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - Prob. 17.121PCh. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.124PCh. 17.3 - Block A has a mass m and is attached to a cord...Ch. 17.3 - Prob. 17.126PCh. 17.3 - 17.127 and 17.128Member ABC has a mass of 2.4 kg...Ch. 17.3 - 17.127 and 17.128Member ABC has a mass of 2.4 kg...Ch. 17.3 - Prob. 17.129PCh. 17.3 - Prob. 17.130PCh. 17.3 - A small rubber ball of radius r is thrown against...Ch. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - In a game of pool, ball A is rolling without...Ch. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - The 8-in.-radius brake drum is attached to a...Ch. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - The motion of the slender 250-mm rod AB is guided...Ch. 17 - Prob. 17.141RPCh. 17 - Disks A and B are made of the same material, are...Ch. 17 - Disks A and B are made of the same material, are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A wedge of mass 2m placed on a rough surface, its part AB is circular of radius R. A small block of mass m is released from rest at A. Find minimum value of friction between wedge and ground so that wedge remains at rest. A m smooth R 2m -B rough (A) 3mg mg (В) 5mg (C) 3mg (D)arrow_forwardDo it fast its urgentarrow_forwardTwo blocks are free to slide along the frictionless wooden track shown below. The block of mass m, = 4.98 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m, = 9.20 kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m, rises after the elastic collision. m An object of mass 3.07 kg, moving with an initial velocity of 4.98 î m/s, collides with and sticks to an object of mass 3.07 kg with an initial velocity of -4.07 j m/s. Find the final velocity of the composite object. 5) m/sarrow_forward
- A sphere of radius r and mass m has a linear velocity v0 directed to the left and no angular velocity as it is placed on a belt moving to the right with a constant velocity v1. If after first sliding on the belt the sphere is to have no linear velocity relative to the ground as it starts rolling on the belt without sliding, determine in terms of v1 and the coefficient of kinetic friction µk between the sphere and the belt (a) the required value of v0, (b) the time t1 at which the sphere will start rolling on the belt, (c) the distance the sphere will have moved relative to the ground at time t1.arrow_forwardA small 200-g collar C can slide on a semicircular rod that is made to rotate about the vertical AB at the constant rate of 6 rad/s. Determine the minimum required value of the coefficient of static friction between the collar and the rod if the collar is not to slide when (a) 0= 90°, (b) 0= 75°, (c) 0= 45°. Indicate in each case the direction of the impending motion.arrow_forwardP.2) When you go bowling, you throw the ball (a uniform sphere of mass m and radius r) so that when it is projected along the lane surface it initially has a linear velocity vo and slips along the surface. Once it touches the surface kinetic friction reduces the velocity of the ball, eventually leads the ball to roll without slip. When the coefficient of kinetie friction between the ball and the surface is 44, determine: (a) the time tro at which the ball will start rolling without slipping, and (b) the linear and angular velocities of the ball at time toll. Hint: v = vo + at w = wo + at 19arrow_forward
- A bowling ball ( m₁ = 3.00 kg and radius of r = 50.0 mm) which has an angular and linear velocity of 57.1 rad/s and 2.85 m/s, respectively, rolls without sliding and hits a slender Bar B of mass m_2 = 1.00 kg and length L = 0.12 m, which is initially at rest as shown in the following figure. Neglecting the friction between the sphere and the bar, and knowing the coefficient of restitution between the sphere and the bar is 0.2, determine (1) the angular velocity of Bar B immediately after impact, and (2) the linear velocities of sphere A and bar B immediately after impact (and at their centroids).arrow_forward3. A block of mass m = 2.00 kg rests on the left edge of a block of mass M= 8.00 kg. The coefficient of kinetic friction between the two blocks is 0.300, and the surface on which the 8.00 kg block rests is frictionless. A constant horizontal force of magnitude F= 10.0N is applied to the 2.00-kg block, setting it in motion as shown in Figure. The distance L that the leading edge of the smaller block travels on the larger block is 3.00 m. F - m M M (a) Draw a separate free-body diagram for each block. (b) In what time interval will the smaller block make it to the right side of the 8.00-kg block? as (Note: Both blocks are set into motion when the force is applied.) (c) How far does the 8.00-kg block move in the process?arrow_forwardThe 2.00-kg slender rod shown is hanging in a vertical position and is pin-supported at point A. The slender rod is initially at rest until a 1.000-kg block C, strikes it at its end at point B.The block slides on a frictionless surface with a velocity of 3.50 m/s to the right. After the impact, it slides with a velocity of 1.250 m/s to the right, and the bar rotates with an angular velocity, ω'. Sketch the moment-impulse diagram 1. Which of the following gives the correct kinematic relationship relating the final velocity of the center of the rod, v'G, and its angular velocity, ω'? 2. Which of the following gives the closest value of the coefficient of restitution, e, between the block and the slender rod? 3. Which of the following gives the closest value of the magnitude of the horizontal impulse at the support at point A?arrow_forward
- The 2.00-kg slender rod shown is hanging in a vertical position and is pin-supported at point A. The slender rod is initially at rest until a 1.000-kg block C, strikes it at its end at point B.The block slides on a frictionless surface with a velocity of 3.50 m/s to the right. After the impact, it slides with a velocity of 1.250 m/s to the right, and the bar rotates with an angular velocity, ω'. 1. What gives the correct kinematic relationship relating the final velocity of the center of the rod, v' , and its angular velocity, ω'? 2. What is the coefficient of restitution, e, between the block and the slender rod? 3. What is the magnitude of the horizontal impulse at the support at point A?arrow_forwardThe 2.00-kg slender rod shown is hanging in a vertical position and is pin-supported at point A. The slender rod is initially at rest until a 1.000-kg block C, strikes it at its end at point B. The block slides on a frictionless surface with a velocity of 3.50 m/s to the right. After the impact, it slides with a velocity of 1.250 m/s to the right, and the bar rotates with an angular velocity, w'. 3.5 m/s с B 1.5 m Answer the following questions given the picture. Please show clear solutions, I want to learn how to solve the problem. 1a. Which of the following gives the correct kinematic relationship relating the final velocity of the center of the rod, v'G, and its angular velocity, w'? A) 1.333 w' B) 0.667 w' C) 1.500 w' D) 0.75 w' 1b. Which of the following gives the closest value of the magnitude of the horizontal impulse at the support at point A? A) 1.125 N-s B) 1.350 N-s C) 0.1180 N-s D) 2.25 N-sarrow_forwardP.1) The uniform cylinder of mass m = 100 kg and radius r = 0.5 m is released from rest on a sloped surface. The coefficient of friction between the cylinder and the sloped surface is µ. a. Determine whether the cylinder slips on the surface if µ = 0.1. b. Find the cylinder's angular and linear acceleration if u = 0.3. 30°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License