
Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 80PP
Because some pathogens can survive 120°C temperatures, medical autoclaves typically operate at 3 atm pressure, where water boils at 134°C. Based on this information and that given in the preceding problem, you can conclude that
- a. Fig. 17.9’s depiction of the liquid-gas interface for water is correct in being concave upward.
- b. Fig. 17.9’s liquid-gas interface should actually be concave downward.
- c. autoclaves operate above the critical point.
- d. at its operating temperature, there can’t be any liquid water in the autoclave.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Current Attempt in Progress
In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm?
d
Number
MI
Units
+q
Current Attempt in Progress
In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm?
d
Number
MI
Units
+q
A 0.500 kg sphere moving with a velocity given by (2.00î – 2.60ĵ + 1.00k) m/s strikes another sphere of mass 1.50 kg moving with an initial velocity of (−1.00î + 2.00ĵ – 3.20k) m/s.
(a) The velocity of the 0.500 kg sphere after the collision is (-0.90î + 3.00ĵ − 8.00k) m/s. Find the final velocity of the 1.50 kg sphere.
R =
m/s
Identify the kind of collision (elastic, inelastic, or perfectly inelastic).
○ elastic
O inelastic
O perfectly inelastic
(b) Now assume the velocity of the 0.500 kg sphere after the collision is (-0.250 + 0.850ĵ - 2.15k) m/s. Find the final velocity of the 1.50 kg sphere.
✓ =
m/s
Identify the kind of collision.
O elastic
O inelastic
O perfectly inelastic
(c) Take the velocity of the 0.500 kg sphere after the collision as (−1.00ỉ + 3.40] + ak) m/s. Find the value of a and the velocity of the 1.50 kg sphere after an elastic collision. (Two values of a are possible, a positive value and a negative value. Report each with their
corresponding final velocities.)
a…
Chapter 17 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 17.1 - If you double the kelvin temperature of a gas,...Ch. 17.2 - You bring a pot of water to boil and then forget...Ch. 17.3 - The figure shows a donut-shaped object. If its...Ch. 17 - Prob. 1FTDCh. 17 - According to the ideal-gas law, what should be the...Ch. 17 - Why are you supposed to check tire pressure when...Ch. 17 - The average speed of the molecules in a gas...Ch. 17 - Suppose you start running while holding a closed...Ch. 17 - Prob. 6FTDCh. 17 - Your roommate claims that ice and snow must be at...
Ch. 17 - Whats the temperature of water just under the ice...Ch. 17 - Ice and water have been together in a glass for a...Ch. 17 - Which takes more heat: melting a gram of ice...Ch. 17 - The atmospheres of relatively low-mass planets...Ch. 17 - The triple point of water defines a precise...Ch. 17 - How is it possible to have boiling water at a...Ch. 17 - How does a pressure cooker work?Ch. 17 - Suppose mercury and glass had the same coefficient...Ch. 17 - A bimetallic strip consists of thin pieces of...Ch. 17 - Marss atmospheric pressure is about 1% that of...Ch. 17 - Prob. 18ECh. 17 - Whats the pressure of an ideal gas if 3.5 mol...Ch. 17 - Prob. 20ECh. 17 - (a) If 2.0 mol of an ideal gas are initially at...Ch. 17 - A pressure of 1010 Pa is readily achievable with...Ch. 17 - Whats the thermal speed of hydrogen molecules at...Ch. 17 - In which gas are the molecules moving faster:...Ch. 17 - How much energy does it take to melt a 65-g ice...Ch. 17 - It takes 200 J to melt an 8.0-g sample of one of...Ch. 17 - If it takes 840 kJ to vaporize a sample of liquid...Ch. 17 - Carbon dioxide sublimes (changes from solid to...Ch. 17 - Find the energy needed to convert 28 kg of liquid...Ch. 17 - A copper wire is 20 m long on a winter day when...Ch. 17 - You have exactly 1 L of ethyl alcohol at room...Ch. 17 - A Pyrex glass marble is 1.00000 cm in diameter at...Ch. 17 - At 0C, the hole in a steel washer is 9.52 mm in...Ch. 17 - Suppose a single piece of welded steel railroad...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - A compressed air cylinder stands 100 cm tall and...Ch. 17 - Youre a lawyer with an unusual case. A...Ch. 17 - A 3000-mL flask is initially open in a room...Ch. 17 - The recommended treatment for frostbite is rapid...Ch. 17 - A stove burner supplies heat to a pan at the rate...Ch. 17 - If a 1-megaton nuclear bomb were exploded deep in...Ch. 17 - Youre winter camping and are melting snow for...Ch. 17 - Prob. 44PCh. 17 - A refrigerator extracts energy from its contents...Ch. 17 - Climatologists have recently recognized that black...Ch. 17 - Repeat Example 17.4 with an initial ice mass of 50...Ch. 17 - How much energy does it take to melt 10 kg of ice...Ch. 17 - Water is brought to its boiling point and then...Ch. 17 - Prob. 50PCh. 17 - Whats the minimum amount of ice in Example 17.4...Ch. 17 - A bowl contains 16 kg of punch (essentially water)...Ch. 17 - A 50-g ice cube at 10C is placed in an equal mass...Ch. 17 - Prob. 54PCh. 17 - What power is needed to melt 20 kg of ice in 6.0...Ch. 17 - You put 300 g of water at 20C into a 500-W...Ch. 17 - If 4.5 105 kg of emergency cooling water at 10C...Ch. 17 - Describe the composition and temperature of the...Ch. 17 - A glass marble 1.000 cm in diameter is to be...Ch. 17 - Prob. 60PCh. 17 - A steel ball bearing is encased in a Pyrex glass...Ch. 17 - Fuel systems of modern cars are designed so...Ch. 17 - A rod of length L0 is clamped rigidly at both...Ch. 17 - Prob. 64PCh. 17 - A solar-heated house stores energy in 5.0 tons of...Ch. 17 - Show that the coefficient of volume expansion of...Ch. 17 - Waters coefficient of volume expansion in the...Ch. 17 - When the expansion coefficient varies with...Ch. 17 - Ignoring air resistance, find the height from...Ch. 17 - The timekeeping of a grandfather clock is...Ch. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Figure 17.12 shows an apparatus used to determine...Ch. 17 - Prob. 74PCh. 17 - (a) Show that, for an ideal gas, the speed of...Ch. 17 - The Maxwell-Boltzmann distribution, plotted in...Ch. 17 - At high gas densities, the van der Waals equation...Ch. 17 - Prob. 78PPCh. 17 - Prob. 79PPCh. 17 - Because some pathogens can survive 120C...Ch. 17 - Prob. 81PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
In a certain plant, fruit is either red or yellow, and fruit shape is either oval or long. Red and oval are the...
Concepts of Genetics (12th Edition)
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cannon is rigidly attached to a carriage, which can move along horizontal rails, but is connected to a post by a large spring, initially unstretched and with force constant k = 1.31 x 104 N/m, as in the figure below. The cannon fires a 200-kg projectile at a velocity of 136 m/s directed 45.0° above the horizontal. 45.0° (a) If the mass of the cannon and its carriage is 5000 kg, find the recoil speed of the cannon. m/s (b) Determine the maximum extension of the spring. m (c) Find the maximum force the spring exerts on the carriage. (Enter the magnitude of the force.) Narrow_forwardlaunch angle. Passage Problems Alice (A), Bob (B), and Carrie (C) all start from their dorm and head for the library for an evening study session. Alice takes a straight path,arrow_forwardbelow the horizontal, and land 55 m horizontally from the end of the jump. Your job is to specify the slope of the ground so skiers' trajectories make an angle of only 3.0° with the ground on land- ing, ensuring their safety. What slope do you specify? T 9.5° -55 marrow_forward
- Make sure to draw a sketch and a free body diagram. DO NOT give me examples but ONLY the solutionarrow_forwardMake sure to draw a sketch AND draw a Free body diagramarrow_forwardP -3 ft 3 ft. O A B 1.5 ft Do 1.5 ft ✓ For the frame and loading shown, determine the magnitude of the reaction at C (in lb) if P = 55 lb. (Hint: Use the special cases: Two-force body and Three-force body.)arrow_forward
- A convex mirror (f.=-6.20cm) and a concave minor (f2=8.10 cm) distance of 15.5cm are facing each other and are separated by a An object is placed between the mirrors and is 7.8cm from each mirror. Consider the light from the object that reflects first from the convex mirror and then from the concave mirror. What is the distance of the image (dia) produced by the concave mirror? cm.arrow_forwardAn amusement park spherical mirror shows park spherical mirror shows anyone who stands 2.80m in front of it an upright image one and a half times the person's height. What is the focal length of the minor? m.arrow_forwardAn m = 69.0-kg person running at an initial speed of v = 4.50 m/s jumps onto an M = 138-kg cart initially at rest (figure below). The person slides on the cart's top surface and finally comes to rest relative to the cart. The coefficient of kinetic friction between the person and the cart is 0.440. Friction between the cart and ground can be ignored. (Let the positive direction be to the right.) m M (a) Find the final velocity of the person and cart relative to the ground. (Indicate the direction with the sign of your answer.) m/s (b) Find the friction force acting on the person while he is sliding across the top surface of the cart. (Indicate the direction with the sign of your answer.) N (c) How long does the friction force act on the person? S (d) Find the change in momentum of the person. (Indicate the direction with the sign of your answer.) N.S Find the change in momentum of the cart. (Indicate the direction with the sign of your answer.) N.S (e) Determine the displacement of the…arrow_forward
- Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal. At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall? N ---direction--- ▾ ---direction--- to the top to the bottom to the left to the right 1.50 m 40.0°arrow_forwardThe magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg Narrow_forward••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY