CALCULUS (CLOTH)
4th Edition
ISBN: 9781319050733
Author: Rogawski
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 61CRE
To determine
The flux of the vector field.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find an equation of the plane tangent to the Bohemian dome S described by the vector function
R(u, v) = (2 cos u, 2 sin u + sin v, cos v)
at the point where u = π/6 and v= π/2.
Find the flux of the vector field V(x, y, z) = 2xy²i + 5x² yj + 3z³k out of the unit sphere.
Flux =
If the electric potential at a point (x, y) in the xy-plane is
V(x, y), then the electric intensity vector at the point (x, y)
is E = – vV(x, y). Suppose that V(x, y) = e¯2x cos 2y.
(a) Find the electric intensity vector at (x/4, 0).
(b) Show that at each point in the plane, the electric po-
tential decreases most rapidly in the direction of the
vector E.
Chapter 17 Solutions
CALCULUS (CLOTH)
Ch. 17.1 - Prob. 1PQCh. 17.1 - Prob. 2PQCh. 17.1 - Prob. 3PQCh. 17.1 - Prob. 4PQCh. 17.1 - Prob. 1ECh. 17.1 - Prob. 2ECh. 17.1 - Prob. 3ECh. 17.1 - Prob. 4ECh. 17.1 - Prob. 5ECh. 17.1 - Prob. 6E
Ch. 17.1 - Prob. 7ECh. 17.1 - Prob. 8ECh. 17.1 - Prob. 9ECh. 17.1 - Prob. 10ECh. 17.1 - Prob. 11ECh. 17.1 - Prob. 12ECh. 17.1 - Prob. 13ECh. 17.1 - Prob. 14ECh. 17.1 - Prob. 15ECh. 17.1 - Prob. 16ECh. 17.1 - Prob. 17ECh. 17.1 - Prob. 18ECh. 17.1 - Prob. 19ECh. 17.1 - Prob. 20ECh. 17.1 - Prob. 21ECh. 17.1 - Prob. 22ECh. 17.1 - Prob. 23ECh. 17.1 - Prob. 24ECh. 17.1 - Prob. 25ECh. 17.1 - Prob. 26ECh. 17.1 - Prob. 27ECh. 17.1 - Prob. 28ECh. 17.1 - Prob. 29ECh. 17.1 - Prob. 30ECh. 17.1 - Prob. 31ECh. 17.1 - Prob. 32ECh. 17.1 - Prob. 33ECh. 17.1 - Prob. 34ECh. 17.1 - Prob. 35ECh. 17.1 - Prob. 36ECh. 17.1 - Prob. 37ECh. 17.1 - Prob. 38ECh. 17.1 - Prob. 39ECh. 17.1 - Prob. 40ECh. 17.1 - Prob. 41ECh. 17.1 - Prob. 42ECh. 17.1 - Prob. 43ECh. 17.1 - Prob. 44ECh. 17.1 - Prob. 45ECh. 17.1 - Prob. 46ECh. 17.1 - Prob. 47ECh. 17.1 - Prob. 48ECh. 17.1 - Prob. 49ECh. 17.1 - Prob. 50ECh. 17.1 - Prob. 51ECh. 17.1 - Prob. 52ECh. 17.1 - Prob. 53ECh. 17.1 - Prob. 54ECh. 17.1 - Prob. 55ECh. 17.1 - Prob. 56ECh. 17.1 - Prob. 57ECh. 17.2 - Prob. 1PQCh. 17.2 - Prob. 2PQCh. 17.2 - Prob. 3PQCh. 17.2 - Prob. 4PQCh. 17.2 - Prob. 1ECh. 17.2 - Prob. 2ECh. 17.2 - Prob. 3ECh. 17.2 - Prob. 4ECh. 17.2 - Prob. 5ECh. 17.2 - Prob. 6ECh. 17.2 - Prob. 7ECh. 17.2 - Prob. 8ECh. 17.2 - Prob. 9ECh. 17.2 - Prob. 10ECh. 17.2 - Prob. 11ECh. 17.2 - Prob. 12ECh. 17.2 - Prob. 13ECh. 17.2 - Prob. 14ECh. 17.2 - Prob. 15ECh. 17.2 - Prob. 16ECh. 17.2 - Prob. 17ECh. 17.2 - Prob. 18ECh. 17.2 - Prob. 19ECh. 17.2 - Prob. 20ECh. 17.2 - Prob. 21ECh. 17.2 - Prob. 22ECh. 17.2 - Prob. 23ECh. 17.2 - Prob. 24ECh. 17.2 - Prob. 25ECh. 17.2 - Prob. 26ECh. 17.2 - Prob. 27ECh. 17.2 - Prob. 28ECh. 17.2 - Prob. 29ECh. 17.2 - Prob. 30ECh. 17.2 - Prob. 31ECh. 17.2 - Prob. 32ECh. 17.2 - Prob. 33ECh. 17.2 - Prob. 34ECh. 17.2 - Prob. 35ECh. 17.2 - Prob. 36ECh. 17.2 - Prob. 37ECh. 17.2 - Prob. 38ECh. 17.2 - Prob. 39ECh. 17.2 - Prob. 40ECh. 17.2 - Prob. 41ECh. 17.2 - Prob. 42ECh. 17.2 - Prob. 43ECh. 17.2 - Prob. 44ECh. 17.2 - Prob. 45ECh. 17.2 - Prob. 46ECh. 17.2 - Prob. 47ECh. 17.2 - Prob. 48ECh. 17.2 - Prob. 49ECh. 17.2 - Prob. 50ECh. 17.2 - Prob. 51ECh. 17.2 - Prob. 52ECh. 17.2 - Prob. 53ECh. 17.2 - Prob. 54ECh. 17.2 - Prob. 55ECh. 17.2 - Prob. 56ECh. 17.2 - Prob. 57ECh. 17.2 - Prob. 58ECh. 17.2 - Prob. 59ECh. 17.2 - Prob. 60ECh. 17.2 - Prob. 61ECh. 17.2 - Prob. 62ECh. 17.2 - Prob. 63ECh. 17.2 - Prob. 64ECh. 17.2 - Prob. 65ECh. 17.2 - Prob. 66ECh. 17.2 - Prob. 67ECh. 17.2 - Prob. 68ECh. 17.2 - Prob. 69ECh. 17.2 - Prob. 70ECh. 17.2 - Prob. 71ECh. 17.2 - Prob. 72ECh. 17.2 - Prob. 73ECh. 17.2 - Prob. 74ECh. 17.2 - Prob. 75ECh. 17.3 - Prob. 1PQCh. 17.3 - Prob. 2PQCh. 17.3 - Prob. 3PQCh. 17.3 - Prob. 4PQCh. 17.3 - Prob. 1ECh. 17.3 - Prob. 2ECh. 17.3 - Prob. 3ECh. 17.3 - Prob. 4ECh. 17.3 - Prob. 5ECh. 17.3 - Prob. 6ECh. 17.3 - Prob. 7ECh. 17.3 - Prob. 8ECh. 17.3 - Prob. 9ECh. 17.3 - Prob. 10ECh. 17.3 - Prob. 11ECh. 17.3 - Prob. 12ECh. 17.3 - Prob. 13ECh. 17.3 - Prob. 14ECh. 17.3 - Prob. 15ECh. 17.3 - Prob. 16ECh. 17.3 - Prob. 17ECh. 17.3 - Prob. 18ECh. 17.3 - Prob. 19ECh. 17.3 - Prob. 20ECh. 17.3 - Prob. 21ECh. 17.3 - Prob. 22ECh. 17.3 - Prob. 23ECh. 17.3 - Prob. 24ECh. 17.3 - Prob. 25ECh. 17.3 - Prob. 26ECh. 17.3 - Prob. 27ECh. 17.3 - Prob. 28ECh. 17.3 - Prob. 29ECh. 17.3 - Prob. 30ECh. 17.3 - Prob. 31ECh. 17.3 - Prob. 32ECh. 17.3 - Prob. 33ECh. 17.3 - Prob. 34ECh. 17.3 - Prob. 35ECh. 17.4 - Prob. 1PQCh. 17.4 - Prob. 2PQCh. 17.4 - Prob. 3PQCh. 17.4 - Prob. 4PQCh. 17.4 - Prob. 5PQCh. 17.4 - Prob. 6PQCh. 17.4 - Prob. 1ECh. 17.4 - Prob. 2ECh. 17.4 - Prob. 3ECh. 17.4 - Prob. 4ECh. 17.4 - Prob. 5ECh. 17.4 - Prob. 6ECh. 17.4 - Prob. 7ECh. 17.4 - Prob. 8ECh. 17.4 - Prob. 9ECh. 17.4 - Prob. 10ECh. 17.4 - Prob. 11ECh. 17.4 - Prob. 12ECh. 17.4 - Prob. 13ECh. 17.4 - Prob. 14ECh. 17.4 - Prob. 15ECh. 17.4 - Prob. 16ECh. 17.4 - Prob. 17ECh. 17.4 - Prob. 18ECh. 17.4 - Prob. 19ECh. 17.4 - Prob. 20ECh. 17.4 - Prob. 21ECh. 17.4 - Prob. 22ECh. 17.4 - Prob. 23ECh. 17.4 - Prob. 24ECh. 17.4 - Prob. 25ECh. 17.4 - Prob. 26ECh. 17.4 - Prob. 27ECh. 17.4 - Prob. 28ECh. 17.4 - Prob. 29ECh. 17.4 - Prob. 30ECh. 17.4 - Prob. 31ECh. 17.4 - Prob. 32ECh. 17.4 - Prob. 33ECh. 17.4 - Prob. 34ECh. 17.4 - Prob. 35ECh. 17.4 - Prob. 36ECh. 17.4 - Prob. 37ECh. 17.4 - Prob. 38ECh. 17.4 - Prob. 39ECh. 17.4 - Prob. 40ECh. 17.4 - Prob. 41ECh. 17.4 - Prob. 42ECh. 17.4 - Prob. 43ECh. 17.4 - Prob. 44ECh. 17.4 - Prob. 45ECh. 17.4 - Prob. 46ECh. 17.4 - Prob. 47ECh. 17.4 - Prob. 48ECh. 17.4 - Prob. 49ECh. 17.4 - Prob. 50ECh. 17.4 - Prob. 51ECh. 17.5 - Prob. 1PQCh. 17.5 - Prob. 2PQCh. 17.5 - Prob. 3PQCh. 17.5 - Prob. 4PQCh. 17.5 - Prob. 5PQCh. 17.5 - Prob. 6PQCh. 17.5 - Prob. 7PQCh. 17.5 - Prob. 1ECh. 17.5 - Prob. 2ECh. 17.5 - Prob. 3ECh. 17.5 - Prob. 4ECh. 17.5 - Prob. 5ECh. 17.5 - Prob. 6ECh. 17.5 - Prob. 7ECh. 17.5 - Prob. 8ECh. 17.5 - Prob. 9ECh. 17.5 - Prob. 10ECh. 17.5 - Prob. 11ECh. 17.5 - Prob. 12ECh. 17.5 - Prob. 13ECh. 17.5 - Prob. 14ECh. 17.5 - Prob. 15ECh. 17.5 - Prob. 16ECh. 17.5 - Prob. 17ECh. 17.5 - Prob. 18ECh. 17.5 - Prob. 19ECh. 17.5 - Prob. 20ECh. 17.5 - Prob. 21ECh. 17.5 - Prob. 22ECh. 17.5 - Prob. 23ECh. 17.5 - Prob. 24ECh. 17.5 - Prob. 25ECh. 17.5 - Prob. 26ECh. 17.5 - Prob. 27ECh. 17.5 - Prob. 28ECh. 17.5 - Prob. 29ECh. 17.5 - Prob. 30ECh. 17.5 - Prob. 31ECh. 17.5 - Prob. 32ECh. 17.5 - Prob. 33ECh. 17.5 - Prob. 34ECh. 17.5 - Prob. 35ECh. 17.5 - Prob. 36ECh. 17.5 - Prob. 37ECh. 17.5 - Prob. 38ECh. 17 - Prob. 1CRECh. 17 - Prob. 2CRECh. 17 - Prob. 3CRECh. 17 - Prob. 4CRECh. 17 - Prob. 5CRECh. 17 - Prob. 6CRECh. 17 - Prob. 7CRECh. 17 - Prob. 8CRECh. 17 - Prob. 9CRECh. 17 - Prob. 10CRECh. 17 - Prob. 11CRECh. 17 - Prob. 12CRECh. 17 - Prob. 13CRECh. 17 - Prob. 14CRECh. 17 - Prob. 15CRECh. 17 - Prob. 16CRECh. 17 - Prob. 17CRECh. 17 - Prob. 18CRECh. 17 - Prob. 19CRECh. 17 - Prob. 20CRECh. 17 - Prob. 21CRECh. 17 - Prob. 22CRECh. 17 - Prob. 23CRECh. 17 - Prob. 24CRECh. 17 - Prob. 25CRECh. 17 - Prob. 26CRECh. 17 - Prob. 27CRECh. 17 - Prob. 28CRECh. 17 - Prob. 29CRECh. 17 - Prob. 30CRECh. 17 - Prob. 31CRECh. 17 - Prob. 32CRECh. 17 - Prob. 33CRECh. 17 - Prob. 34CRECh. 17 - Prob. 35CRECh. 17 - Prob. 36CRECh. 17 - Prob. 37CRECh. 17 - Prob. 38CRECh. 17 - Prob. 39CRECh. 17 - Prob. 40CRECh. 17 - Prob. 41CRECh. 17 - Prob. 42CRECh. 17 - Prob. 43CRECh. 17 - Prob. 44CRECh. 17 - Prob. 45CRECh. 17 - Prob. 46CRECh. 17 - Prob. 47CRECh. 17 - Prob. 48CRECh. 17 - Prob. 49CRECh. 17 - Prob. 50CRECh. 17 - Prob. 51CRECh. 17 - Prob. 52CRECh. 17 - Prob. 53CRECh. 17 - Prob. 54CRECh. 17 - Prob. 55CRECh. 17 - Prob. 56CRECh. 17 - Prob. 57CRECh. 17 - Prob. 58CRECh. 17 - Prob. 59CRECh. 17 - Prob. 60CRECh. 17 - Prob. 61CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- What is the directional derivative of the function f(x,y, z) = 2xy + z² at the point (1, – 1,3) in the direction of the vector v = i + 2j + 3k.arrow_forwardAn airplane took off from point (3, 0, 0) at an initial velocity, v(0)= 3j with an acceleration vector of a(t) = (-3 cos t)i + (-3 sin t)j + 2k. Determine the vector function, r(t), to represent the path of the airplane as a function of t.arrow_forward= Calculate the flux of the vector field F(x, y, z) = (5x + 9)ỉ through a disk of radius 3 centered at the origin in the yz-plane, oriented in the negative x-direction. Flux =arrow_forward
- Consider the following vector function: A = (6xy)x+ (3x²)ŷ + (4z)2 a) Calculate the divergence and the curl of this vector function. b) Calculate the path integral of this vector function from the origin to the point (1,1,1) using two different paths: 1) going in the direction from (0,0,0) to (1,0,0), then the y direction from (1,0,0) to (1,1,0), then the 2 direction from (1,1,0) to (1,1,1) and 2) going in a straight line from (0,0,0) to (1,1,1). c) Are the results of parts a) and b) consistent with each other? Explain why or why not.arrow_forwardThe work done by the vector field F(x, y) = (-y², ²) along the arc of the parabola y = 2x² - 4x + 2 from the point (1,0) to the point (0, 2) followed by the line segment from the point (0, 2) to the point (-1,2) equals: O a. 6/55 O b. 77/15 O c. None of these. O d. 55/13 O e. 55/17 Check cross out cross out cross out cross out cross outarrow_forwardSketch the vector field F(x, y) = 3i + 5j and calculate the flux then the circulation of F along the line segment C from (-3, 1)| to (-2, –5). F-n ds F. drarrow_forward
- Find the gradient vector field of f(r, y, z) = x³yª + y³z³ + cz°.arrow_forwardLet C be the curve of intersection of the paraboloid x² + y² = z and the cylinder (a) Determine the vector-valued function R for C. (b) Find a vector equation of the tangent line to C at t = 0. (c) Evaluate (RX R')'(0). 7+(y-1)² = 1 6arrow_forward1. Let R and b be positive constants. The vector function r(t) = (R cost, R sint, bt) traces out a helix that goes up and down the z-axis. a) Find the arclength function s(t) that gives the length of the helix from t = 0 to any other t. b) Reparametrize the helix so that it has a derivative whose magnitude is always equal to 1. c) Set R = b = 1. Compute T, Ñ, and B for the helix at the point (√2/2,√2/2, π/4).arrow_forward
- Consider the function f(x,y) = ex cos y + ey sinx and the points P(1,0) and Q(-3,3). Find Duf at the point P for which U is a unit vector in the direction of PQ. Also at P,find Duf, if U is a unit vector which Dyf is a maximum.arrow_forwardFind the direction in which the maximum rate of change occurs for the function f(x, y) = 3x sin(xy) at the point (4,2). Give the answer as a unit vector in component form rounded to 4 decimal places. (0.4535,0.8913) Xarrow_forwardSuppose the vector field v(x, y, z) = (4xy², -4xz², 5x) represents the velocity field of a fluid. Find the circulation where C is the intersection of paraboloid z = 4 - 2x² - 2y2 with cylinder x² + y² = 4. Enter an exact answer. Provide your answer below: Sev-dr = [v. v. dr,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY